
 

 

 

 

 

 
          

   DIRECTORATE OF DISTANCE EDUCATION 

 

UNIVERSITY OF NORTH BENGAL 

 
 

MASTER OF SCIENCE-MATHEMATICS 

SEMESTER -II 

 

 

 

 

 

 

 

 

 

 

 

THEORY OF RINGS AND MODULES 

 

DEMATH-2 ELEC-4 

                         

                     BLOCK-2 

 

 



 

 

 

 

UNIVERSITY OF NORTH BENGAL 

Postal Address: 

The Registrar,  

University of North Bengal,  

Raja Rammohunpur,  

P.O.-N.B.U.,Dist-Darjeeling,  

West Bengal,  Pin-734013,  

India.   

Phone: ( O )  +91 0353-2776331/2699008  

Fax:( 0353 )  2776313, 2699001 

Email: regnbu@sancharnet.in ; regnbu@nbu.ac.in 

Wesbsite: www.nbu.ac.in 

 

First Published in 2019 

 

All rights reserved. No Part of this book may be reproduced or transmitted,in any form or by 

any means, without permission in writing from University of North Bengal. Any person who 

does any unauthorised act in relation to this book may be liable to criminal prosecution and 

civil claims for damages. This book is meant for educational and learning purpose. The authors 

of the book has/have taken all reasonable care to ensure that the contents of the book do not 

violate any existing copyright or other intellectual property rights of any person in any manner 

whatsoever. In the even the Authors has/ have been unable to track any source and if any 

copyright has been inadvertently infringed, please notify the publisher in writing for corrective 

action. 

 

 

 

 



 

 

FOREWORD 

 

The Self-Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university‘s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner‘s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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Unit 8 FREE MODULE, CYCLIC MODULE SIMPLE AND SEMI-

SIMPLE : This unit deals with free module, Cyclic Module and its 

properties also simple and semi-simple module. 

Unit 9 PROJECTIVE AND INJECTIVE MODULE : This unit deals 

with projective and injective module and its properties. 

Unit 10 FLAT MODULE, GENERATED MODULE OVER PID: 

This unit deals with flat module , generated module and its properties 

also deals with generated module over PID 

Unit 11 EMBEDDING INJECTIVE MODULE: This unit deals with 

Embedding Injective module and its proof with example 

Unit 12 TENSOR PRODUCT OF MODULE : This Unit deals with 

tensor product of Module and its example  

Unit 13 CHAIN CONDITIONS ON MODULE : This unit deals with 

chain conditions on module and its properties with example 

Unit 14 NOETHERIAN AND ARTINIAN MODULES : This unit 

deals with primary composition and Noetherian and Artinian module 

with its properties also with examples.   
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8.12 Answer to check your progress 

8.0 OBJECTIVE 

* Learn How to multiply cyclic module and know about Jacobson of 

Semi-Simple Sodule.  

* Learn Properties of P-Be‘Zout Module 

* Learn Isotopic Component of Semi-Simple Module 

* Learn Length of Semi-Simple Module 

8.1 INTRODUCTION: FREE MODULE 

In mathematics, a free module is a module that has a basis  that is, 

a generating set consisting of linearly independent elements. 

Every vector space is a free module, but, if the ring of the coefficients is 

not a division ring (not a field in the commutative case), then there exist 

non-free modules. 

Given any set S and ring R, there is a free R-module with basis S, which 

is called the free module on S or module of formal R-linear 

combinations of the elements of S. 

A free abelian group is precisely a free module over the ring Z of 

integers. 

8.1.1 Definition 

For a ring R and an R-module R, the set E    is a basis for M if: 

 E is a generating set for M; that is to say, every element of M is a 

finite sum of elements of E multiplied by coefficients in R; and 

 E is linearly independent, that is, R for R distinct elements 

of M implies that r1 = r2 = r3………  (where Om is the zero element 

of M and 0 is the zero element of  M ). 

A free module is a module with a basis. 

An immediate consequence of the second half of the definition is that the 

coefficients in the first half are unique for each element of M. 
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If R has invariant basis number, then by definition any two bases have 

the same cardinality. The cardinality of any (and therefore every) basis is 

called the rank of the free module M. If this cardinality is finite, the free 

module is said to be free of rank n, or simply free of finite rank. 

8.1.2 Examples 

Let R be a ring. 

 R is a free module of rank one over itself (either as a left or right 

module); any unit element is a basis. 

 More generally, a (say) left ideal I of R is free if and only if it is a 

principal ideal generated by a left nonzerodivisor, with a generator 

being a basis. 

 If R is commutative, the polynomial ring R(x) in indeterminate X is a 

free module with a possible basis 1, X, X
2
, .... 

 Let A(t) be a polynomial ring over a commutative ring A, f a monic 

polynomial of degree d there, B = A(t) and € the image of t in B. 

Then B contains A as a subring and is free as an A-module with a 

basis . 

 For any non-negative integer n, Rn = R x R x R x R x 

…………………, the cartesian product of n copies of R as a left R-

module, is free. If R has invariant basis number (which is true for 

commutative R), then its rank is n. 

 A direct sum of free modules is free, while an infinite cartesian 

product of free modules is generally not free (cf. the Baer–Specker 

group.) 

8.1.3 Formal Linear Combinations 

Given a set E and ring R, there is a free R-module that has E as a basis: 

namely, the direct sum of copies of R indexed by E 

Explicitly, it is the submodule of the cartesian product E (R is viewed as 

say a left module) that consists of the elements that have only finitely 

many nonzero components. One can embed E into R
(E)

 as a subset by 

identifying an element e with that of R
(E)

 whose e-th component is 1 (the 

unity of R) and all the other components are zero. Then each element 

of R
(E)

 can be written uniquely as 
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where only finitely many E are nonzero. It is called a formal linear 

combination of elements of E. 

A similar argument shows that every free left (resp. right) R-module is 

isomorphic to a direct sum of copies of R as left (resp. right) module. 

8.1.4 Generalizations 

Many statements about free modules, which are wrong for general 

modules over rings, are still true for certain generalisations of free 

modules. Projective modules are direct summands of free modules, so 

one can choose an injection in a free module and use the basis of this one 

to prove something for the projective module. Even weaker 

generalisations are flat modules, which still have the property that 

tensoring with them preserves exact sequences, and torsion-free modules. 

If the ring has special properties, this hierarchy may collapse, e.g., for 

any perfect local Dedekind ring, every torsion-free module is flat, 

projective and free as well. A finitely generated torsion-free module of a 

commutative PID is free. A finitely generated Z-module is free if and 

only if it is flat. 

 

 

8.2 CYCLIC MODULE 

In mathematics, more specifically in ring theory, a cyclic 

module or monogenous module is a module over a ring that is 

generated by one element. The concept is analogous to cyclic group, that 

is, a group that is generated by one element. 

A cyclic module (or more specifically, a cyclic left -module over 

a ring ) is a module that is generated by a single element—the 

analogue of a cyclic group for modules. 

In a left -module , the cyclic submodule generated by an 

element  is often denoted . 



Notes 

11 

Every cyclic left -module is isomorphic to a quotient module of the 

left-regular module over  (that is, a quotient module of  as a left -

module). 

8.2.1 Definition 

A left R-module M is called cyclic if M can be generated by a single 

element i.e. M = (x) = Rx = {rx | r ∈ R} for some x in M. Similarly, a 

right R-module N is cyclic if N = yR for some y ∈ N. 

8.2.2 Examples 

 Every cyclic group is a cyclic Z-module. 

 Every simple R-module M is a cyclic module since the submodule 

generated by any nonzero element x of M is necessarily the whole 

module M. 

 If the ring R is considered as a left module over itself, then its cyclic 

submodules are exactly its left principal ideals as a ring. The same 

holds for R as a right R-module, mutatis mutandis. 

 If R is F[x], the ring of polynomials over a field F, and V is an R-

module which is also a finite-dimensional vector space over F, then 

the Jordan blocks of x acting on V are cyclic submodules. (The 

Jordan blocks are all isomorphic to F[x] / (x − λ)
n
; there may also be 

other cyclic submodules with different annihilators; see below.) 

8.2.3 Problem  
o (a) Prove that a nonzero R-module M is irreducible if and only 

if M is a cyclic module with any nonzero element as its generator. 

o (b) Determine all the irreducible Z-modules. 

(a) Prove that a nonzero R-module M is irreducible if and only if M is a cyclic 

module with any nonzero element as its generator. 

(⟹) Suppose that M is an irreducible module. 

Let a∈M be any nonzero element and consider the 

submodule (a) generated by the element a. 

Since a is a nonzero element, the submodule (a) is non-zero. Since Mis 

irreducible, this yields that 

M=(a). 
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Hence M is a cyclic module generated by a Since aa is any nonzero 

element, we conclude that the module M is a cyclic module with any 

nonzero element as its generator. 

(⟸) Suppose that M is a cyclic module with any nonzero element as its 

generator. 

Let N be a nonzero submodule of M. Since N is non-zero, we can pick a 

nonzero element a∈N. By assumption, the non-zero element aa generates 

the module M. 

Thus we have 

(a) N M=(a). 

It follows that N=M, and hence M is irreducible. 

(b) Determine all the irreducible Z-modules. 

By the result of part (a), any irreducible Z-module is generated by any 

nonzero element. 

We first claim that M cannot contain an element of infinite order. 

Suppose on the contrary a∈M has infinite order. 

Then since M is irreducible, we have 

M=(a)≅Z. 

Since Z-module Z has, for example, a proper submodule 2Z, it is not 

irreducible. Thus, the module M is not irreducible, a contradiction. 

It follows that any irreducible Z-module is a finite cyclic group. 

(Recall that any Z-module is an abelian group.) 

We claim that its order must be a prime number. 

Suppose that M=Z/nZ, where n=ml with m,l>1,. 

Then 

(l¯)={l+nZ,2l+nZ,…,(m−1)l+nZ} 

is a proper submodule of M, and it is a contradiction. 

Thus, n must be prime. 

We conclude that any irreducible Z-module is a cyclic group of prime 

order. 
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Problem. 1) Let  be a commutative ring with unity and  some 

ideals of  If there exists a surjective -module 

homomorphism  then  

2) Show that the result in 1) may not be true in noncommutative rings. 

Solution. 1) We have  for some  Now 

if  then  and thus 

 

So  

2) Let  be the ring of  matrices with, say, real entries. 

Let  and  See 

that  are left ideals of  and that  is not contained in  Now 

define  in this way: for any  we 

define  It is easy to see that  is a well-

defined -module homomorphism. Also,  is surjective because 

if  and  then 

 because  

Theorem  Let R be a commutative ring and M be a cyclic multiplication 

module. If every finitely generated prime submodules of M are maximal 

and for every maximal submodules N of M, there exist ideal I of R such 

that IM ⊆ N with I ⊆ Rad(R). Then M is a P-Be´zout. 

Proof. Let N be a finitely generated prime submodule of M. By 

hipothesis of theorem yields that N is a maximal submodule and the 

same way, there exist ideal I of R such that IM ⊆ N with I ⊆ Rad(R). So 

N + IM = M and hence N = M .. Therefore N is cyclic submodule since 

M is a cyclic module. 



Notes 

14 

Since every finitely generated prime submodules of M is cyclic then M is 

a P-B´ezout module. ✷ 

 

Theorem  Let R be a Noetherian P-Be´zout ring and M be a faithful 

multiplication module. Then every prime submodules of M are finitely 

generated and of the form rM for is a prime ideal of R. Furthermore, if 

either M is a cyclic or simple module then M is P-Be´zout. 

Proof. Let N be a prime submodule of M, (N : M) is prime ideal of R. 

Since R is a Noetherian ring then (N : M) is finitely generated ideal and 

hence (N : M) is principle by R is a P-B´ezout. Let (N : M) = Rr for r ∈ 

R. So N = (N : M)M = rM since M is a multiplication module. Since M is 

a faithful multiplication module hence N is finitely generated. Therefore 

N is finitely generated and of the form rM for is a prime ideal of R. 

 

Let m ∈ M so that N = rM = rRm = Rrm since M is a cyclic module and 

hence N is cyclic submodule since N = Rx for x = rm ∈ M. Since every 

finitely generated prime submodules of M is cyclic then M is a P-B´ezout 

module. 

Pure submodule of M is only 0 Since M is a simple module. If N = 0 

clear that N is cyclic finitely generated prime submmodule and hence M 

is a P-B´ezout module. ✷ 

8.2.4 Properties Of P-Be´Zout Module 

The ring which considered in this paper is commutative with an identity 

and will be denoted by R. The concept of P-B´ezout ring was introduced 

and studied in Bakkari [1] as a generalization of the B´ezout ring. A ring 

R is said to be P-B´ezout if every finitely generated prime ideal I over R 

is principle. 

We will adapt that concept into module. A module M over R is said to be 

P-B´ezout if every finitely generated prime submodule N of M is cyclic. 

See [3] for example. Let R be a commutative ring with an identity and M 

be a cyclic multiplication R-module which has some properties of its 

submodule, we prove that M is P-B´ezout module. 
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Lemma  Let R be a commutative ring, M be a module over R and N be a 

prime submodule of M. Then ideal (N : M) of R is prime. 

Proof. Suppose AB ⊆ (N : M) for A and B are ideals of R. By definition 

of annihilator (N : M), it yields (N : M)M ⊆ N and hence ABM ⊆ N 

since ABM ⊆ (N : M)M. Furthermore, by N is a prime submodule then 

A ⊆ (N : M) or B ⊆ (N : M) since BM ⊆ N. Since A ⊆ (N : M) or B ⊆ 

(N : M) so that (N : M) is prime ideal has proved. ✷ 

The first theorem, we mean, as follows: 

 

Theorem  Let R be a Noetherian P-Be´zout ring and M be a faithful 

multiplication module. Then every prime submodules of M are finitely 

generated and of the form rM for is a prime ideal of R. Furthermore, if 

either M is a cyclic or simple module then M is P-Be´zout. 

Proof. Let N be a prime submodule of M. By Lemma 3.1, (N : M) is 

prime ideal of R. Since R is a Noetherian ring then (N : M) is finitely 

generated ideal and hence (N : M) is principle by R is a P-B´ezout. Let 

(N : M) = Rr for r ∈ R. So N = (N : M)M = rM since M is a 

multiplication module. Since M is a faithful multiplication module hence 

N is finitely generated. Therefore N is finitely generated and of the form 

rM for is a prime ideal of R. 

Let m ∈ M so that N = rM = rRm = Rrm since M is a cyclic module and 

hence N is cyclic submodule since N = Rx for x = rm ∈ M. Since every 

finitely generated prime submodules of M is cyclic then M is a P-B´ezout 

module. 

Pure submodule of M is only 0 Since M is a simple module. If N = 0 

clear that N is cyclic finitely generated prime submmodule and hence M 

is a P-B´ezout module. 

Check in Progress –I 

Note: i) Write your answers in the space given below.  
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Q. 1 Let R be a commutative ring, M be a module over R and N be a 

prime submodule of M. Then ideal (N : M) of R is prime. 

Solution. 

…………………………………………………………………….. 

…………………………………………………………………………… 

……………………………………………………………………………. 

Q. 2Let  be a commutative ring with unity and  some ideals of  If 

there exists a surjective -module 

homomorphism  then  

Solution. 

…………………………………………………………………….. 

…………………………………………………………………………… 

……………………………………………………………………………. 

8.3 CYCLIC AND MULTIPLICATION 

MODULE 

An R-module M is said to be cyclic if it has one generator, that is if M = 

Rm for some m ∈ M. Similarly, M is finitely generated if it has finitely 

generators, that is if M = Rm1 + Rm2 + Rm3 + ... + Rmn for finitely 

many mi ∈ M. A module M is said to be Noetherian if every submodule 

of M is finitely generated. 

The annihilator of M is denoted Ann(M). For any submodule N of M, the 

annihilator of the factor module M/N will be denoted by (N : M) so that 

(N : M) = {r ∈ R|rM ⊆ N}. We can see that (N : M) is an ideal of R. A 

module M is said to be faithful if Ann(M)=0}. A module M is said to be 

multiplication module if for any submodule N of M, there exist an ideal I 

of R such that N = IM. It was proven that M is a multiplication module if 

and only if N = (N : M)M for every submodule N of M. A proper 

submodule N of M over R is said to be prime if rm ∈ N for r ∈ R and m 

∈ M implies that either m ∈ N or r ∈ (N : M). It clear that N is prime 

submodule of M if IK ⊆ N for submodule K of M and ideal I of R 

implies that either K ⊆ N or I ⊆ (N : M). 
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Some properties which used in later section is given as follow. Let M be 

a faithful multiplication R-module. has proved that M is finitely 

generated. Let M be a multiplication R-module, N be a submodule of M 

and let I be an ideal of R contained in the Jacobson radical of R. 

Ghalanzarzadeh at all [6, Corollary 3.10] said that if IM + N = M then N 

= M. 

Definition. Let  be a ring with unity and let  be an -module. The 

annihilator of  in  is defined 

by  We say 

that  is faithful if  

Remark. Every free -module is faithful. To see this, let  be a 

free -module and let  If  is an element of a basis 

of  then  implies that  and so  is faithful. 

Example 1. Let  be some rings with unity and 

put  Clearly  is an -module. 

Let  Then  and thus, by Corollary 1 in this 

post,  is a projective -module. But  and 

hence, by the above remark,  is not free. A similar argument shows 

that each  is a projective but not free -module. As an example, we 

know from the Chinese remainder theorem that if  is 

the prime factorization of  then  Thus each  is a 

projective but not free  – module.  

Example 2. Let  be a field and  the ring of  matrices 

with entries in  Let 

 

Clearly  is an -module and  as -modules.  Thus  is 

a projective -module. Suppose that  is free and  is a 
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basis for  Then, since  we have  But, by 

the definition of  we also have  So  which is 

absurd. Hence  is not free. You can extend this argument 

to  where  is any integer. Then each column space 

of  will be a projective but not a free -module.  

The next two examples are important in the theory of Azumaya algebras. 

Example 3. Let  be a commutative ring and let  be (finitely 

generated) projective -modules. Then  is a (finitely 

generated) projective -module. 

Proof. So there exist -modules  and free -modules  such 

that  So  where  (resp. 

) is finite if  (resp. ) is finitely generated. See 

that  where 

 

Example 4. Let  be a commutative ring and let  be a finitely 

generated projective -module. Then  is a finitely generated 

projective -module. 

Proof. First note that if  is an -module, then  is an -

module too because we can define  for 

all  and  Now, since  is a finitely 

generated projective -module, there exist an -module  and a 

free -module  such that  Note that 

 

as -modules, and so  is a (finitely generated) free -module. 

On the other hand 
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by Theorem 1. Now identify  with  and 

let  be the inclusion map. Define the 

map  by 

 

for 

all 

 C

learly  are -module homomorphisms and  is the 

identity map. Thus, by Lemma 3 in this 

post,  Therefore  is 

projective and since  is finitely generated,   is finitely 

generated too because  

Theorem. Let  be a commutative ring and let  be finitely 

generated projective -modules. Then, as -modules, we have 

 

Proof. A nice challenge for the reader!  

8.4 PROJECTIVE MODULES; 

DEFINITIONS & BASIC FACTS  

Corollary 1. An -module  is projective if and only if there exists 

an -module  such that  is free. 

Proof. If  is free, then  is projective by Lemma 2 in part (1). 

Conversely, suppose that  is projective. By Remark 2 in part (1), there 

exists an exact sequence  where  is 

free. This sequence splits by the theorem in part (1), i.e.   



Notes 

20 

Corollary 2. A finitely generated -module  is projective if and only 

if there exists an -module  such that  is a finitely generated 

free -module, i.e.  for some integer  

Proof. One side is obvious by Corollary 1 (or Lemma 2 in part (1)). 

Conversely, suppose that  is a finitely generated 

projective -module. Let  be a basis for  and define the 

map  by  Clearly  is a well-

defined onto -module homomorphism. Let  Then we have 

an exact sequence  where  is the 

inclusion map. This sequence splits by the theorem in part (1), 

i.e.  

Corollary 3. Let  be a family of -modules. 

Then  is projective if and only if  is projective for 

all  

Proof. Suppose first that  is projective and let  By Corollary 1, 

there exists an -module  and a free -module  such 

that  But then  and 

thus  is projective by Corollary 1 again. Conversely, suppose that 

each  is projective. Then for every  there exists an -

module  and a free -module  such 

that  Let  and  Then  is a 

free -module and  Thus  is projective.  

In the next post I will give a few examples of projective modules. 

8.5 SIMPLE MODULES 

A simple module over a ring  is a module that is simple as a group 

with operators—that is, it is a module with no submodules other than 

itself and the zero module, and it is not itself the zero module and scalar 

products are not all equal to 0. 

If  is a commutative ring, then every simple module 

over  is isomorphic (as an -module) to a quotient ring of  by 
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a maximal ideal; that is, every simple module over  is isomorphic (as 

an -module) to a quotient ring of  that is a field. This is not the case 

when  is not commutative. In this case, every simple left -module is 

isomorphic (as a left -module) to the quotient of  by a maximal left 

ideal. 

For example, all simple modules over the ring of integers  are of the 

form , where  is a prime. A more interesting example of a simple 

module is the (left) module of complex numbers over the ring  of 

complex numbers with a noncommuting indeterminate  adjoined, 

where  corresponds to complex conjugation. 

In mathematics, specifically in ring theory, the simple modules over a 

ring R are the (left or right) modules over R that are not zero and have no 

non-zero proper submodules. Equivalently, a module M is simple if and 

only if every cyclic submodule generated by a non-zero element 

of M equals M. Simple modules form building blocks for the modules of 

finite length, and they are analogous to the simple groups in group 

theory. 

In this article, all modules will be assumed to be right unital 

modules over a ring R. 

8.6 EXAMPLES 

Z-modules are the same as abelian groups, so a simple Z-module is an 

abelian group which has no non-zero proper subgroups. These are 

the cyclic groups of prime order. 

If I is a right ideal of R, then I is simple as a right module if and only 

if I is a minimal non-zero right ideal: If M is a non-zero proper 

submodule of I, then it is also a right ideal, so I is not minimal. 

Conversely, if I is not minimal, then there is a non-zero right 

ideal J properly contained in I. J is a right submodule of I, so I is not 

simple. 

If I is a right ideal of R, then R/I is simple if and only if I is a maximal 

right ideal: If M is a non-zero proper submodule of R/I, then the 

preimage of M under the quotient map R → R/I is a right ideal which is 
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not equal to R and which properly contains I. Therefore, I is not 

maximal. Conversely, if I is not maximal, then there is a right 

ideal J properly containing I. The quotient map R/I → R/J has a non-zero 

kernel which is not equal to R/I, and therefore R/I is not simple. 

Every simple R-module is isomorphic to a quotient R/m where m is 

a maximal right ideal of R.  By the above paragraph, any quotient R/m is 

a simple module. Conversely, suppose that M is a simple R-module. 

Then, for any non-zero element x of M, the cyclic submodule xR must 

equal M. Fix such an x. The statement that xR = M is equivalent to the 

surjectivity of the homomorphism R → M that sends r to xr. The kernel 

of this homomorphism is a right ideal I of R, and a standard theorem 

states that M is isomorphic to R/I. By the above paragraph, we find 

that I is a maximal right ideal. Therefore, M is isomorphic to a quotient 

of R by a maximal right ideal. 

If k is a field and G is a group, then a group representation of G is a left 

module over the group ring k[G] (for details, see the main page on this 

relationship).
[2]

 The simple k[G] modules are also known 

as irreducible representations. A major aim of representation theory is to 

understand the irreducible representations of groups. 

A module is simple if it is non-zero and does not admit a proper non-zero 

submodule. Simplicity of a module M is equivalent to either of: 

 • Am = M for every m non-zero in M. simple module  

• M ' A/m for some maximal left ideal of A. 

 In particular, simple modules are cyclic; and the annihilator of any non-

zero element of a simple module is a maximal left ideal. The annihilator 

of a simple module is called a primitive ideal. The ring A is primitive 

ideal primitive if the zero ideal is primitive, or, equivalently, if A admits 

a faithful simple primitive ring module. 

• A module may have no simple submodules. Indeed, simple submodules 

of AA are minimal left ideals, but there may not be any such (e.g., in Z).  

• The module A is simple if and only if A is a division ring. In this case, 

any simple module is isomorphic to A. 
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 • The Z-module Z/pnZ where p is a prime is indecomposable; it is 

simple if and only if n = 1. 

Let A = Endk V for k a field and V a k-vector space. The set a of finite 

rank endomorphisms is a two-sided ideal of A. Let B be the subring A 

generated by the identity endomorphism and a. Then V is a simple B-

module (in particular a simple A-module). And B ( A if dimk V is 

infinite. Let W be a codimension 1 subspace of V . The endomorphisms 

killing W form a minimal left ideal in A (and in B). Thus A and B when 

dimk V is infinite give examples of primitive rings that admit non-trivial 

proper two-sided ideals.  

Proposition . Let M be a finitely generated A-module and N ( M a 

proper submodule. Then there exists a maximal submodule of M 

containing N.  

Corollary . Let M be finitely generated non-zero. Then there exists a 

primitive ideal a such that aM ( M. 

Proof. Choose N maximal submodule and let a = Ann M/N. 

When faithful modules with strong properties exist. If a ring admits 

faithful modules with strong properties (e.g., a primitive ring), then, as 

might be expected, the ring itself has strong properties 

Proposition . Let M be faithful simple and l a minimal left ideal. Then M 

' l 

Proof. The submodule lM is non-zero by faithfulness. Choose m in M 

such that lm 6= 0. By simplicity, lm = M. The homomorphism l → M 

defined by a 7→ am has zero kernel because l is minimal. 

Proposition . Let M be a faithful module admitting a composition series 

Σ. If the opposite of M is of finite type, then every simple A-module is a 

quotient in Σ. 

Proof. Let {mi} be a finite generating set of M over the commutant of A. 

Consider the map a 7→ (ami) from A into ⊕iM. If ami = 0 for all i, then 

aM = 0 and so a = 0 by the faithfulness of M. Thus A imbeds into a finite 

number of copies of M. Every simple module being a quotient of A, we 

are done. 
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8.6.1 Basic Properties Of Simple Modules 

The simple modules are precisely the modules of length 1; this is a 

reformulation of the definition. 

Every simple module is indecomposable, but the converse is in general 

not true. 

Every simple module is cyclic, that is it is generated by one element. 

Not every module has a simple submodule; consider for instance the Z-

module Z in light of the first example above. 

Let M and N be (left or right) modules over the same ring, and 

let f : M → N be a module homomorphism. If M is simple, then f is either 

the zero homomorphism or injective because the kernel of f is a 

submodule of M. If N is simple, then f is either the zero homomorphism 

or surjective because the image of f is a submodule of N. If M = N, 

then f is an endomorphism of M, and if M is simple, then the prior two 

statements imply that f is either the zero homomorphism or an 

isomorphism. Consequently, the endomorphism ring of any simple 

module is a division ring. This result is known as Schur's lemma. 

The converse of Schur's lemma is not true in general. For example, 

the Z-module Q is not simple, but its endomorphism ring is isomorphic 

to the field Q. 

8.6.2 Simple Modules And Composition Series 

If M is a module which has a non-zero proper submodule N, then there is 

a short exact sequence. A common approach to proving a fact about M is 

to show that the fact is true for the center term of a short exact sequence 

when it is true for the left and right terms, then to prove the fact 

for N and M/N. If N has a non-zero proper submodule, then this process 

can be repeated. This produces a chain of submodules. 

In order to prove the fact this way, one needs conditions on this sequence 

and on the modules Mi/Mi + 1. One particularly useful condition is that 

the length of the sequence is finite and each quotient module Mi/Mi + 1 is 

simple. In this case the sequence is called a composition series for M. In 

order to prove a statement inductively using composition series, the 

statement is first proved for simple modules, which form the base case of 
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the induction, and then the statement is proved to remain true under an 

extension of a module by a simple module. For example, the Fitting 

lemma shows that the endomorphism ring of a finite 

length indecomposable module is a local ring, so that the strong Krull-

Schmidt theorem holds and the category of finite length modules is 

a Krull-Schmidt category. 

The Jordan–Hölder theorem and the Schreier refinement 

theorem describe the relationships amongst all composition series of a 

single module. The Grothendieck group ignores the order in a 

composition series and views every finite length module as a formal sum 

of simple modules. Over semisimple rings, this is no loss as every 

module is a semisimple module and so a direct sum of simple 

modules. Ordinary character theory provides better arithmetic control, 

and uses simple CG modules to understand the structure of finite 

groups G. Modular representation theory uses Brauer characters to view 

modules as formal sums of simple modules, but is also interested in how 

those simple modules are joined together within composition series. This 

is formalized by studying the Ext functor and describing the module 

category in various ways including quivers (whose nodes are the simple 

modules and whose edges are composition series of non-semisimple 

modules of length 2) and Auslander–Reiten theory where the associated 

graph has a vertex for every indecomposable module. 

8.6.3 The Jacobson Density Theorem 

An important advance in the theory of simple modules was the Jacobson 

density theorem. The Jacobson density theorem states: 

Let U be a simple right R-module and write D = EndR(U). Let A be any 

D-linear operator on U and let X be a finite D-linearly independent 

subset of U. Then there exists an element r of R such that x·A = x·r for 

all x in X.  

In particular, any primitive ring may be viewed as (that is, isomorphic to) 

a ring of D-linear operators on some D-space. 

A consequence of the Jacobson density theorem is Wedderburn's 

theorem; namely that any right artinian simple ring is isomorphic to a full 



Notes 

26 

matrix ring of n by n matrices over a division ring for some n. This can 

also be established as a corollary of the Artin–Wedderburn theorem. 

Check in Progress –II 

Note: i) Write your answers in the space given below.  

Q. 1 State Jacob Denisity theorem.. 

Solution. 

…………………………………………………………………….. 

…………………………………………………………………………… 

……………………………………………………………………………. 

Q. 2An -module  is projective if and only if there exists an -

module  such that  is free  

Solution. 

…………………………………………………………………….. 

…………………………………………………………………………… 

……………………………………………………………………………. 

 

8.7 SEMI-SIMPLE MODULES 

A semisimple module is, informally, a module that is not far removed 

from simple modules. Specifically, it is a module  with the following 

property: for every submodule , there exists a 

submodule  such that  and , 

where by 0 we mean the zero module. 

In mathematics, especially in the area of abstract algebra known 

as module theory, a semisimple module or completely reducible 

module is a type of module that can be understood easily from its parts. 

A ring that is a semisimple module over itself is known as an 

Artinian semisimple ring. Some important rings, such as group 

rings of finite groups over fields of characteristic zero, are semisimple 

rings. An Artinian ring is initially understood via its largest semisimple 

quotient. The structure of Artinian semisimple rings is well understood 
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by the Artin–Wedderburn theorem, which exhibits these rings as 

finite direct products of matrix rings. 

8.7.1 Definition 

A module over a (not necessarily commutative) ring with unity is said to 

be semisimple (or completely reducible) if it is the direct 

sum of simple (irreducible) submodules. 

For a module M, the following are equivalent: 

1. M is semisimple; i.e., a direct sum of irreducible modules. 

2. M is the sum of its irreducible submodules. 

3. Every submodule of M is a direct summand: for every 

submodule N of M, there is a complement P such 

that M = N ⊕ P. 

For 3 →2 , the starting idea is to find an irreducible submodule by 

picking any nonzero x € M and letting P be a maximal submodule such 

that x  . It can be shown that the complement of P is irreducible.
[1]

 

The most basic example of a semisimple module is a module over a 

field; i.e., a vector space. On the other hand, the ring Z of integers is not 

a semisimple module over itself (because, for example, it is not an 

artinian ring.) 

Semisimple is stronger than completely decomposable, which is a direct 

sum of indecomposable submodules. 

Let A be an algebra over a field k. Then a left module M over A is said to 

be absolutely semisimple if, for any field extension F of k, F   is a 

semisimple module over F ⨂ . 

A module is semisimple if it satisfies any of the following equivalent 

conditions:  

• it is a sum of simple submodules.  

• it is a direct sum of simple submodules.  

• every submodule has a complement. 

Before turning to the proof of the equivalence of the three conditions, let 

us observe that the third condition passes to submodules and quotient 
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modules. Indeed, every quotient is isomorphic to a sub (M/N ' Q, where 

Q is a complement of N), so it is enough to observe the passage for 

submodules. If P ⊆ N are submodules, and Q is a complement of P in M, 

then Q ∩ N is a complement of P in N as is easily verified. 

Now we prove the equivalence of the three conditions. The second 

clearly implies the first. Now suppose that the first holds and let N be a 

submodule. Choose, by Zorn, a submodule maximal P with respect to the 

following two properties: it is a sum of simple submodules; it intersects 

N trivially. If N ⊕ P ( M, then there is a simple submodule S of M that is 

not contained in N +P. This means S∩(N +P) = 0, by the simplicity of S, 

so N ∩ (S + P) = 0. Since S + P ) P, the maximality of P is violated. Thus 

N ⊕ P = M, and the third conditon holds. 

Suppose now that the third condition holds. We will show that the 

second holds too. Choose, by Zorn, a maximal collection C of simple 

submodules whose sum is their direct sum. Let N be the sum of 

submodules in such a collection, and suppose that N ( M. Choose y ∈ M 

⊆ N. Choose, by Zorn, a maximal submodule P of Ay. Let S be 

complement to P in Ay (it exists by the observation we made before 

beginning the proof). Being isomorphic to Ay/P, it is simple. And its 

existence violates the maximality of the collection C, which finishes the 

proof. 

8.7.2 Classification Of Semi-Simple Modules 

It happens that semisimple modules have a convenient classification 

(assuming the axiom of choice). To prove this classification, we first 

state some intermediate results. 

Proposition. Let  be a semisimple left -module. Then 

every submodule and quotient module of  is also simple. 

Proof. First, suppose that  is a submodule of . Let  be a 

submodule of , and let  be a submodule of  such 

that  and . We note that 

if  and  are elements such that , 

then . It follows that
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Since , it follows that  is semisimple. 

Now let us consider a quotient module  of , with  the 

canonical homomorphism . Let  be a submodule 

of . Then  is a submodule of , so there exists a 

submodule  such 

that  and . Then in , 

since  is surjective,

Therefore  is semisimple as well. 

Lemma 1. Let  be a ring, and let  be a nonzero cyclic left -

module. Then  contains a maximal proper submodule. 

Proof. Let  be a generator of . Let  be the set of submodules that 

avoid , ordered by inclusion. Then  is nonempty, as . Also, 

if  is a nonempty chain in , then  is an element of , as 

this is a submodule of  that does not contain . Then  is an 

upper bound on the chain ; thus every chain has an upper bound. 

Then by Zorn's Lemma,  has a maximal element.  

Lemma 2. Every cyclic semisimple module has a simple submodule. 

Proof. Let  be a cyclic semisimple module, and let  be a generator 

for . Let  be a maximal proper submodule of  (as given in 

Lemma 1), and let  be a submodule such 

that  and . We claim that  is simple. 

Indeed, suppose that  is a nonzero submodule of . Since the 

sum  is direct, it follows that the sum  is direct. 

Since  strictly contains , it follows that , 

so ; it follows that ; thus  is simple.  

Theorem. Let  be a left -module, for a ring . The following are 

equivalent: 
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1.  is a semisimple -module; 

2.  is isomorphic to a direct sum of simple left -modules; 

3.  is isomorphic to an (internal) sum of -modules. 

Facts about semisimple modules.  

(1) A simple module is semisimple. Vector spaces (over division rings) 

are semisimple. The ring Z is not a semisimple module over itself.  

(2) Let M be a sum of simple submodules Ni , i ∈ I. For any submodule 

N, there exists a subset J of I such that N is isomorphic to the direct sum 

of Nj , j ∈ J; and there exists a subset K of I such that the direct sum of 

Nk, k ∈ K, is a complement of N. In particular, M/N ' ⊕k∈KNk. 

 (3) Subquotients of semisimple modules are semisimple. 

8.7.3 Isotypic Components Of Semi-Simple 

Modules. 

For an isomorphism class λ of simple modules, we denote by Mλ the 

sum of submodules of M that are isomorphic to a representative in the 

class λ. We call Mλ the λ-isotypic component. 

 • The isotypic components are semisimple (by definition); their sum is 

direct.  

• N = ⊕λ(N ∩ Mλ) for any submodule N of a semisimple module M.  

• The λ-isotypic is mapped to the λ-isotypic under homomorphisms. 

• The only submodules that are preserved by all endomorphisms of a 

semisimple module are the isotpyic components and their sums. 

8.7.4 Length Of A Semi-Simple Module 

Let M be a semisimple module. If ⊕i∈IMi and ⊕j∈JMj are two 

expressions for M as a direct sum of simple submodules, then I and J 

have the same cardinality, which we then call the length of M and denote 

by `A M. If S is a simple module, we denote by [M : S] the length of the 

S-isotypic component of M. 

• When `A M is finite, M has a composition series, and `A M coincides 

with Jordan-H¨older length of M.  
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• Two semisimple modules are isomorphic if and only if their S-isotypic 

lengths are equal for every simple module S.  

• A semisimple module has finite length if and only if it is finitely 

generated.  

• The length of a vector space equals the cardinality of a base. 

 

8.8 SUMMARY  

We study in this unit semi simple modules. We study Jacobson Density 

Theorem. We study free module and cyclic module with its examples. 

We study length of semi simple module. We study formal linear 

combinators. We study cyclic and projective module. We study The 

concept of P-B´ezout ring and module.  

1. For a ring R and an R-module R, the set E    is a basis for M if: 

E is a generating set for M; that is to say, every element of M is a 

finite sum of elements of E multiplied by coefficients in R; and 

     E is linearly independent, that is, R for R distinct elements 

of M implies that 

      r1 = r2 = r3………  (where Om is the zero element of M and 0 is 

the zero     element of  M). 

2. A cyclic module (or more specifically, a cyclic left -module over 

a ring ) is a module that is generated by a single element—the 

analogue of a cyclic group for modules. 

3. A left R-module M is called cyclic if M can be generated by a single 

element i.e. M = (x) = Rx = {rx | r ∈ R} for some x in M. Similarly, a 

right R-module N is cyclic if N = yR for some y ∈ N. 

4. Let R be a commutative ring and M be a cyclic multiplication module. 

If every finitely generated prime submodules of M are maximal and 

for every maximal submodules N of M, there exist ideal I of R such 

that IM ⊆ N with I ⊆ Rad(R). Then M is a P-Be´zout. 
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5. A semisimple module is, informally, a module that is not far removed 

from simple modules. Specifically, it is a module  with the 

following property: for every submodule , there exists a 

submodule  such that  and , 

where by 0 we mean the zero module. 

6. A module over a (not necessarily commutative) ring with unity is said 

to be semisimple (or completely reducible) if it is the direct 

sum of simple (irreducible) submodules. 

For a module M, the following are equivalent: 

M is semisimple; i.e., a direct sum of irreducible modules. 

M is the sum of its irreducible submodules. 

Every submodule of M is a direct summand: for every 

submodule N of M, there is a complement P such that M = N ⊕ P. 

8.9 KEYWORD 

Cyclic : Occurring In Cycles; Regularly Repeated 

Isotypic : Isotypic (Comparative More Isotypic, Superlative 

Most Isotypic) (Geology, Of A Crystalline Mineral) Having A Chemical 

Formula Whose Structure Is Similar To That Of Another 

Summands : A Quantity To Be Added To Another 

Irreducible : Not Able To Be Reduced Or Simplified 

 

8.10 QUESTIONS FOR REVIEW 

Q. 1 Let R be a commutative ring with 1 and let M be an R-module. 

Prove that the R-module M is irreducible if and only if M is isomorphic 

to R/I, where I is a maximal ideal of R, as an R-module. 

Q 2 Let R be a ring with 1. 

A nonzero R-module M is called irreducible if 0 and M are the only 

submodules of M. 

(It is also called a simple module.) 
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Q3 Prove that a nonzero R-module M is irreducible if and only if M is a 

cyclic module with any nonzero element as its generator. 

(b) Determine all the irreducible Z-modules. 

Q. 4Let R be a commutative ring with 1 and let M be an R-module. 

Prove that the R-module M is irreducible if and only if M is isomorphic 

to R/I, where I is a maximal ideal of R, as an R-module. 
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              Q 2 Check in Section 2.3 

Check in Progress-II 

Answer Q. 1 Check in Section 5.4 

              Q 2 Check in Section 4 
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UNIT 9 - PROJECTIVE AND 

INJECTIVE MODULE 
 

STRUCTURE 

9.0   Objective 

9.1 Introduction: Projective Module 

9.1.1 Split-Exact Eequences 

9.1.2 Exactness 

9.1.3 Elementary Example & Properties 

9.1.4 Projective vs. Free Module 

9.1.5 Projective vs. Flat Modules 

9.1.6 The Category of Projective Module 

9.1.7 Projective Resolution 

            9.1.8       Projective Module Over Commutative Ring 

9.1.9 Rank 

9.1.10 Projective Module over Polynomial Ring 

9.2  Injective Module 

9.2.1 Definition 

9.2.2 Example 

9.2.3 Commutative Example 

9.2.4 Artinian Examples 

9.2.5 Injective Cogenerators 

9.2.6 Injective Resolutions 

9.2.7 Indecomposables 

9.2.8 Change of Rings 

9.2.9 Self-Injective Rings 

9.3 Summary 

9.4 Keyword 

9.5 Questions for Review 
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9.6 Suggestion Reading And References 

9.7 Answer to check your progress 

9.0 OBJECTIVE 

 We learn in this unit Projective and Injective Module  

 Learn polynomial ring 

 Work with Self Injective Ring 

 Work with Artinian Example  

 Work with Projective module over commutative Ring 

9.1 INTRODUCTION: PROJECTIVE 

MODULE 

In mathematics, particularly in algebra, the class of projective 

modules enlarges the class of free modules (that is, modules with basis 

vectors) over a ring, by keeping some of the main properties of free 

modules. Various equivalent characterizations of these modules appear 

below. 

A free module is a projective module, but the converse may not hold 

over some rings, such as Dedekind rings. However, every projective 

module is a free module if the ring is a principal ideal domain such as the 

integers, or a polynomial ring (this is the Quillen–Suslin theorem). 

Projective modules were first introduced in 1956 in the influential 

book Homological Algebra by Henri Cartan and Samuel Eilenberg. 

 

Definition 

The usual category theory definition is in terms of the property 

of lifting that carries over from free to projective modules: a module P is 

projective if and only if for every surjective module 

homomorphism f : N ↠ M and every module homomorphism g : P → M, 

there exists a homomorphism h : P → N such that fh = g. (We don't 
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require the lifting homomorphism h to be unique; this is not a universal 

property.) 

 

The advantage of this definition of "projective" is that it can be 

carried out in categories more general than module categories: we 

don't need a notion of "free object". It can also be dualized, leading 

to injective modules. The lifting property may also be rephrased 

as every morphism from P to M factors through every epimorphism 

to M. Thus, by definition, projective modules are precisely 

the projective objects in the category of R-modules. 

9.1.1 Split-Exact Eequences 

A module P is projective if and only if every short exact sequence of 

modules of the form is a split exact sequence. That is, for every 

surjective module homomorphism f : B ↠ P there exists a section map, 

that is, a module homomorphism h : P → B such that f ∘ h = idP. In that 

case, h(P) is a direct summand of B, h is an isomorphism from P to h(P), 

and h ∘ f is a projection on the summand h(P). Equivalently. 

9.1.2 Exactness 

An R-module P is projective if and only if the covariant functor Hom(P,-

): R-Mod → AB is an exact functor, where R-Mod is the category of 

left R-modules and AB the category of abelian groups. When the 

ring R is commutative, AB is advantageously replaced by R-Mod in the 

preceding characterization. This functor is always left exact, but, 

when P is projective, it is also right exact. This means that P is projective 

if and only if this functor preserves epimorphisms (surjective 

homomorphisms), or if it preserves finite colimits. 

9.1.3 Elementary Examples And Properties 

The following properties of projective modules are quickly deduced from 

any of the above (equivalent) definitions of projective modules: 
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 Direct sums and direct summands of projective modules are 

projective. 

 If e = e
2
 is an idempotent in the ring R, then Re is a projective left 

module over R. 

Relation to Other Module-Theoretic Properties 

The relation of projective modules to free and flat modules is subsumed 

in the following diagram of module properties: 

 

The left-to-right implications are true over any ring, although some 

authors define torsion-free modules only over a domain. The right-to-left 

implications are true over the rings labeling them. There may be other 

rings over which they are true. For example, the implication labeled 

"local ring or PID" is also true for polynomial rings over a field: this is 

the Quillen–Suslin theorem. 

9.1.4 Projective Vs. Free Modules 

Any free module is projective. The converse is true in the following 

cases: 

 if R is a field or skew field: any module is free in this case. 

 if the ring R is a principal ideal domain. For example, this applies 

to R = Z (the integers), so an abelian group is projective if and only 

if it is a free abelian group. The reason is that any submodule of a 

free module over a principal ideal domain is free. 

 if the ring R is a local ring. This fact is the basis of the intuition of 

"locally free = projective". This fact is easy to prove for finitely 

generated projective modules. In general, it is due to Kaplansky 

(1958). 

In general though, projective modules need not be free: 

 Over a direct product of rings R × S where R and S are nonzero rings, 

both R × 0 and 0 × S are non-free projective modules. 
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 Over a Dedekind domain a non-principal ideal is always a projective 

module that is not a free module. 

 Over a matrix ring Mn(R), the natural module R
n
 is projective but not 

free. More generally, over any semisimple ring, every module is 

projective, but the zero ideal and the ring itself are the only free 

ideals. 

The difference between free and projective modules is, in a sense, 

measured by the algebraic K-theory group K0(R), see below. 

9.1.5 Projective vs. Flat Modules 

Every projective module is flat. The converse is in general not true: the 

abelian group Q is a Z-module which is flat, but not projective.  

Conversely, a finitely related flat module is projective.  

Govorov (1965) and Lazard (1969) proved that a module M is flat if and 

only if it is a direct limit of finitely-generated free modules. 

In general, the precise relation between flatness and projectivity was 

established by Raynaud &Gruson (1971) (see also Drinfeld 

(2006) and Braunling, Groechenig& Wolfson (2016)) who showed that a 

module M is projective if and only if it satisfies the following conditions: 

 M is flat, 

 M is a direct sum of countably generated modules, 

 M satisfies a certain Mittag-Leffler type condition 

9.1.6 The Category Of Projective Modules 

Submodules of projective modules need not be projective; a ring R for 

which every submodule of a projective left module is projective is 

called left hereditary. 

Quotients of projective modules also need not be projective, for 

example Z/n is a quotient of Z, but not torsion free, hence not flat, and 

therefore not projective. 

The category of finitely generated projective modules over a ring is 

an exact category. (See also algebraic K-theory). 
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9.1.7 Projective Resolutions 

Given a module, M, a projective resolution of M is an infinite exact 

sequence of modules 

··· → Pn → ··· → P2 → P1 → P0 → M → 0, 

with all the Pis projective. Every module possesses a projective 

resolution. In fact a free resolution (resolution by free modules) exists. 

The exact sequence of projective modules may sometimes be abbreviated 

to P(M) → M → 0 or P• → M → 0. A classic example of a projective 

resolution is given by the Koszul complex of a regular sequence, which 

is a free resolution of the ideal generated by the sequence. 

The length of a finite resolution is the subscript n such that Pn is nonzero 

and Pi = 0 for i greater than n. If M admits a finite projective resolution, 

the minimal length among all finite projective resolutions of M is called 

its projective dimension and denoted pd(M). If M does not admit a finite 

projective resolution, then by convention the projective dimension is said 

to be infinite. As an example, consider a module M such that pd(M) = 0. 

In this situation, the exactness of the sequence 0 → P0 → M → 0 

indicates that the arrow in the center is an isomorphism, and 

hence M itself is projective.  

9.1.8 Projective Modules Over Commutative Rings 

Projective modules over commutative rings have nice properties. 

The localization of a projective module is a projective module over the 

localized ring. A projective module over a local ring is free. Thus a 

projective module is locally free (in the sense that its localization at 

every prime ideal is free over the corresponding localization of the ring). 

The converse is true for finitely generated modules over Noetherian 

rings: a finitely generated module over a commutative noetherian ring is 

locally free if and only if it is projective. 

However, there are examples of finitely generated modules over a non-

Noetherian ring which are locally free and not projective. For instance, 

a Boolean ring has all of its localizations isomorphic to F2, the field of 

two elements, so any module over a Boolean ring is locally free, but 

there are some non-projective modules over Boolean rings. One example 
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is R/I where R is a direct product of countably many copies of F2 and I is 

the direct sum of countably many copies of F2 inside of R. The R-

module R/I is locally free since R is Boolean (and it is finitely generated 

as an R-module too, with a spanning set of size 1), but R/I is not 

projective because I is not a principal ideal. (If a quotient module R/I, for 

any commutative ring R and ideal I, is a projective R-module then I is 

principal.) 

However, it is true that for finitely presented modules M over a 

commutative ring R (in particular if M is a finitely generated R-module 

and R is noetherian), the following are equivalent. 

1. M is flat. 

2. M is projective. 

3. M is free as R-module for every maximal ideal m of R. 

4. M is free as R-module for every prime ideal m of R. 

5. There exist f € R generating the unit ideal such that M is free 

as R-module for each i. 

6. M is a locally free sheaf on R (where R is the sheaf associated 

to M.) 

Moreover, if R is a noetherian integral domain, then, by Nakayama's 

lemma, these conditions are equivalent to 

 The dimension of the R–vector space M is the same for all prime 

ideals r of R, where R is the residue field. That is to say, M has 

constant rank (as defined below). 

Let A be a commutative ring. If B is a (possibly non-commutative) A-

algebra that is a finitely generated projective A-module containing A as a 

subring, then A is a direct factor of B. 

9.1.9 Rank 

Let P be a finitely generated projective module over a commutative 

ring R and X be the spectrum of R. The rank of P at a prime ideal in X is 

the rank of the free R-module M. It is a locally constant function on X. In 

particular, if X is connected (that is if R or its quotient by its nilradical is 

an integral domain), then P has constant rank. 
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  A basic motivation of the theory is that projective modules (at least over 

certain commutative rings) are analogues of vector bundles. This can be 

made precise for the ring of continuous real-valued functions on 

a compact Hausdorff space, as well as for the ring of smooth functions 

on a smooth manifold (see Serre–Swan theorem that says a finitely 

generated projective module over the space of smooth functions on a 

compact manifold is the space of smooth sections of a smooth vector 

bundle). 

   Vector bundles are locally free. If there is some notion of "localization" 

which can be carried over to modules, such as the usual localization of a 

ring, one can define locally free modules, and the projective modules 

then typically coincide with the locally free modules. 

9.1.10 Projective Modules Over A Polynomial Ring 

The Quillen–Suslin theorem, which solves Serre's problem, is 

another deep result: if K is a field, or more generally a principal ideal 

domain, and R = K[X1,...,Xn] is a polynomial ring over K, then every 

projective module over R is free. This problem was first raised by Serre 

with K a field (and the modules being finitely generated). Bass settled it 

for non-finitely generated modules and Quillen and Suslin independently 

and simultaneously treated the case of finitely generated modules. 

Since every projective module over a principal ideal domain is free, one 

might ask this question: if R is a commutative ring such that every 

(finitely generated) projective R-module is free, then is every (finitely 

generated) projective R[X]-module free? The answer is no. A 

counterexample occurs with R equal to the local ring of the 

curve y
2
 = x

3
 at the origin. Thus the Quillen-Suslin theorem could never 

be proved by a simple induction on the number of variables. 

Theorem 5. Every free module F over a ring R with identity is 

projective.  

Proof. Assume that we are given a diagram of homomorphisms of 

unitary R-modules: 

with g an epimorphism and F a free R-module on the set X (ι : X −→ F). 

For each x ∈ X, f(ι(x)) ∈ B. Since g is an epimorphism, there exists ax ∈ 
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A with g(ax) = f(ι(x)). Since F is free, the map X −→ A given by x 7→ 

ax induces an R-module homomorphism h : F −→ A such that h(ι(x)) = 

ax for all x ∈ X. Consequently, ghι(x) = g(ax) = f ι(x) for all x ∈ X so 

that ghι = f ι : X −→ B. By the uniqueness part of the Theorem 4 we 

have gh = f. Therefore F is projective. 

Corollary . Every module A over a ring R is the homomorphic image of 

a projective R-module. 

Theorem. Let R be a ring. The following conditions on an R-module P are 

equivalent.  

(1) P is projective; 

 (2) every short exact sequence 0 −→ A f −→ B g −→ P −→ 0 is split exact 

(hence B ∼= A ⊕ P);  

(3) there is a free module F and an R-module K such that F ∼= K ⊕ P.  

Proof. • (1) ⇒ (2) 

with bottom row exact by the hypothesis. Since P is projective there is an 

R-module homomorphism h : P −→ B such that gh = 1p. 

 Therefore, the short exact sequence 0 −→ A f −→ B g h P −→ 0 is split  

and B ∼= A ⊕ P 

. • (2) ⇒ (3there is free R-module F and an epimorphismg : F −→ P. If K 

= Ker g, then 0 −→ K   −→ι F g −→ P −→ 0 is exact. By hypothesis 

the sequence splits so that F ∼= K ⊕ P.  

• (3) ⇒ (1) Let π be the composition F ∼= K ⊕P −→ P where the second 

map is the canonical projection. Similarly let ι be the composition P −→ 

K ⊕ P ∼= F with the first map the canonical injection. Given a diagram 

of R-module homomorphisms 

Since F is projective by Theorem 5, there is an R-module 

homomorphism h1 : F −→ A such that gh1 = fπ. Let h = h1ι : P −→ A. 

Then gh = gh1ι = (fπ)ι = f(πι) = f1P = f. Therefore, P is projective. 

Example . Projective but not free: If R = Z6, then Z3 and Z2 are Z6-

modules and there is Z6-module isomorphism Z6 ∼= Z2 ⊕ Z3. Hence 

both Z2 and Z3 are projective Z6-modules that are not free Z6-modules. 
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Proposition 1. Let R be a ring. A direct sum of R-modules X i∈I Pi is 

projective iff each Pi is projective. Proof. Suppose PPi is projective. 

Since the proof of 

 (3) ⇒ (1) uses only the fact that F is projective, it remains valid with X 

i∈IPi , X i6=j Pi and Pj in place of F, K and P respectively. The converse 

is proved by similar techniques using the diagram 

If each Pj is projective, then for each j there exists hj :Pj −→ A such that 

ghj = f ιj . Bthere is a unique homomorphism h :PPi −→ A with hιj = hj 

for every j and we also have gh = f. 

Check In Progress-I 

Note: i) Write your answers in the space given below.  
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…………………………………………………………………………… 

…………………………………………………………………………… 

Q.2Define Flat Module. 

Solution 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

9.2 INJECTIVE MODULE 

In mathematics, especially in the area of abstract algebra known 

as module theory, an injective module is a module Q that shares certain 

desirable properties with the Z-module Q of all rational numbers. 

Specifically, if Q is a submodule of some other module, then it is already 

a direct summand of that module; also, given a submodule of a 

module Y, then any module homomorphism from this submodule 

to Q can be extended to a homomorphism from all of Y to Q. This 



Notes 

45 

concept is dual to that of projective modules. Injective modules were 

introduced in (Baer 1940) and are discussed in some detail in the 

textbook (Lam 1999, §3). 

Injective modules have been heavily studied, and a variety of additional 

notions are defined in terms of them: Injective cogenerators are injective 

modules that faithfully represent the entire category of modules. Injective 

resolutions measure how far from injective a module is in terms of 

the injective dimension and represent modules in the derived 

category. Injective hulls are maximal essential extensions, and turn out to 

be minimal injective extensions. Over a Noetherian ring, every injective 

module is uniquely a direct sum of indecomposable modules, and their 

structure is well understood. An injective module over one ring, may not 

be injective over another, but there are well-understood methods of 

changing rings which handle special cases. Rings which are themselves 

injective modules have a number of interesting properties and include 

rings such as group rings of finite groups over fields. Injective modules 

include divisible groups and are generalized by the notion of injective 

objects in category theory. 

9.2.1 Definition 

A left module Q over the ring R is injective if it satisfies one (and 

therefore all) of the following equivalent conditions: 

 If Q is a submodule of some other left R-module M, then there exists 

another submodule K of M such that M is the internal direct 

sum of Q and K, i.e. Q + K = M and Q ∩ K = {0}. 

 Any short exact sequence 0 →Q → M → K → 0 of left R-

modules splits. 

 If X and Y are left R-modules, f : X → Y is an injective module 

homomorphism and g : X → Q is an arbitrary module 

homomorphism, then there exists a module 

homomorphism h : Y → Q such that hf = g, i.e. such that the 

following diagram commutes: 
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 The contravariant functor Hom(-,Q) from the category of left R-

modules to the category of abelian groups is exact. 

Injective right R-modules are defined in complete analogy. 

9.2.2 Examples 

Trivially, the zero module {0} is injective. 

Given a field k, every k-vector space Q is an injective k-module. Reason: 

if Q is a subspace of V, we can find a basis of Q and extend it to a basis 

of V. The new extending basis vectors span a subspace K of V and V is 

the internal direct sum of Q and K. Note that the direct 

complement K of Q is not uniquely determined by Q, and likewise the 

extending map h in the above definition is typically not unique. 

The rationals Q (with addition) form an injective abelian group (i.e. an 

injective Z-module). The factor group Q/Z and the circle group are also 

injective Z-modules. The factor group Z/nZ for n > 1 is injective as 

a Z/nZ-module, but not injective as an abelian group. 

9.2.3 Commutative Examples 

More generally, for any integral domain R with field of fractions K, 

the R-module K is an injective R-module, and indeed the smallest 

injective R-module containing R. For any Dedekind domain, the quotient 

module K/R is also injective, and its indecomposable summands are 

the localizations Rp/R for the nonzero prime ideals p. The zero ideal is 

also prime and corresponds to the injective K. In this way there is a 1-1 

correspondence between prime ideals and indecomposable injective 

modules. 

A particularly rich theory is available for commutative noetherian 

rings due to EbenMatlis, (Lam 1999, §3I). Every injective module is 

uniquely a direct sum of indecomposable injective modules, and the 

indecomposable injective modules are uniquely identified as the injective 
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hulls of the quotients R/P where P varies over the prime spectrum of the 

ring. The injective hull of R/P as an R-module is canonically 

an RP module, and is the RP-injective hull of R/P. In other words, it 

suffices to consider local rings. The endomorphism ring of the injective 

hull of R/P is the completion R of R at P. 

Two examples are the injective hull of the Z-module Z/pZ (the Prüfer 

group), and the injective hull of the k[x]-module k (the ring of inverse 

polynomials). The latter is easily described as k[x,x
−1

]/xk[x]. This module 

has a basis consisting of "inverse monomials", that is x
−n

 for n = 0, 1, 2, 

…. Multiplication by scalars is as expected, and multiplication 

by x behaves normally except that x·1 = 0. The endomorphism ring is 

simply the ring of formal power series. 

9.2.4 Artinian Examples 

If G is a finite group and k a field with characteristic 0, then one shows in 

the theory of group representations that any subrepresentation of a given 

one is already a direct summand of the given one. Translated into module 

language, this means that all modules over the group algebra kG are 

injective. If the characteristic of k is not zero, the following example may 

help. 

If A is a unital associative algebra over the field k with 

finite dimension over k, then Homk(−, k) is a duality between finitely 

generated left A-modules and finitely generated right A-modules. 

Therefore, the finitely generated injective left A-modules are precisely 

the modules of the form Homk(P, k) where P is a finitely generated 

projective right A-module. For symmetric algebras, the duality is 

particularly well-behaved and projective modules and injective modules 

coincide. 

For any Artinian ring, just as for commutative rings, there is a 1-1 

correspondence between prime ideals and indecomposable injective 

modules. The correspondence in this case is perhaps even simpler: a 

prime ideal is an annihilator of a unique simple module, and the 

corresponding indecomposable injective module is its injective hull. For 

finite-dimensional algebras over fields, these injective hulls are finitely-

generated modules . 
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Check In Progress-II 

Note: i) Write your answers in the space given below.  

Q. 1Define Injective Module. 
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…………………………………………………………………………… 

…………………………………………………………………………… 

Q.2Define Free Module. 

Solution 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

9.2.5 Injective Cogenerators 

Maybe the most important injective module is the abelian group Q/Z. It 

is an injective cogenerator in the category of abelian groups, which 

means that it is injective and any other module is contained in a suitably 

large product of copies of Q/Z. So in particular, every abelian group is a 

subgroup of an injective one. It is quite significant that this is also true 

over any ring: every module is a submodule of an injective one, or "the 

category of left R-modules has enough injectives." To prove this, one 

uses the peculiar properties of the abelian group Q/Z to construct an 

injective cogenerator in the category of left R-modules. 

For a left R-module M, the so-called "character module" M
+
 = 

HomZ(M,Q/Z) is a right R-module that exhibits an interesting duality, 

not between injective modules and projective modules, but between 

injective modules and flat modules (Enochs&Jenda 2001, pp. 78–80). 

For any ring R, a left R-module is flat if and only if its character module 

is injective. If R is left noetherian, then a left R-module is injective if and 

only if its character module is fla 
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9.2.6 Injective Resolutions 

Every module M also has an injective resolution: an exact sequence of 

the form 

0 → M → I
0
 → I

1
 → I

2
 → ... 

where the I
 j
 are injective modules. Injective resolutions can be used to 

define derived functors such as the Ext functor. 

The length of a finite injective resolution is the first index n such 

that I
n
 is nonzero and I

i
 = 0 for i greater than n. If a module M admits a 

finite injective resolution, the minimal length among all finite injective 

resolutions of M is called its injective dimension and denoted id(M). 

If M does not admit a finite injective resolution, then by convention the 

injective dimension is said to be infinite. (Lam 1999, §5C) As an 

example, consider a module M such that id(M) = 0. In this situation, the 

exactness of the sequence 0 → M → I0 → 0 indicates that the arrow in 

the center is an isomorphism, and hence M itself is injective.
 

Equivalently, the injective dimension of M is the minimal integer (if 

there is such, otherwise ∞) n such that Ext
N
 

A(–,M) = 0 for all N > n. 

9.2.7 Indecomposables 

Every injective submodule of an injective module is a direct summand, 

so it is important to understand indecomposable injective modules, (Lam 

1999, §3F). 

Every indecomposable injective module has a local endomorphism ring. 

A module is called a uniform module if every two nonzero submodules 

have nonzero intersection. For an injective module M the following are 

equivalent: 

 M is indecomposable 

 M is nonzero and is the injective hull of every nonzero submodule 

 M is uniform 

 M is the injective hull of a uniform module 

 M is the injective hull of a uniform cyclic module 

 M has a local endomorphism ring 
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Over a Noetherian ring, every injective module is the direct sum of 

(uniquely determined) indecomposable injective modules. Over a 

commutative Noetherian ring, this gives a particularly nice 

understanding of all injective modules, described in (Matlis 1958). The 

indecomposable injective modules are the injective hulls of the 

modules R/p for p a prime ideal of the ring R. Moreover, the injective 

hull M of R/p has an increasing filtration by modules Mn given by the 

annihilators of the ideals p
n
, and Mn+1/Mn is isomorphic as finite-

dimensional vector space over the quotient field k(p) of R/p to 

HomR/p(p
n
/p

n+1
, k(p)). 

9.2.8 Change Of Rings 

It is important to be able to consider modules over subrings or quotient 

rings, especially for instance polynomial rings. In general, this is 

difficult, but a number of results are known, (Lam 1999, p. 62). 

Let S and R be rings, and P be a left-R, right-S bimodule that is flat as a 

left-R module. For any injective right S-module M, the set of module 

homomorphisms HomS( P, M ) is an injective right R-module. For 

instance, if R is a subring of S such that S is a flat R-module, then every 

injective S-module is an injective R-module. In particular, if R is an 

integral domain and S its field of fractions, then every vector space 

over S is an injective R-module. Similarly, every injective R[x]-module is 

an injective R-module. 

For quotient rings R/I, the change of rings is also very clear. An R-

module is an R/I-module precisely when it is annihilated by I. The 

submodule annI(M) = { m in M : im = 0 for all i in I } is a left submodule 

of the left R-module M, and is the largest submodule of M that is an R/I-

module. If M is an injective left R-module, then annI(M) is an injective 

left R/I-module. Applying this to R=Z, I=nZ and M=Q/Z, one gets the 

familiar fact that Z/nZ is injective as a module over itself. While it is 

easy to convert injective R-modules into injective R/I-modules, this 

process does not convert injective R-resolutions into injective R/I-

resolutions, and the homology of the resulting complex is one of the 

early and fundamental areas of study of relative homological algebra. 
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9.2.9 Self-Injective Rings 

Every ring with unity is a free module and hence is a projective as a 

module over itself, but it is rarer for a ring to be injective as a module 

over itself, (Lam 1999, §3B). If a ring is injective over itself as a right 

module, then it is called a right self-injective ring. Every Frobenius 

algebra is self-injective, but no integral domain that is not a field is self-

injective. Every proper quotient of a Dedekind domain is self-injective. 

A right Noetherian, right self-injective ring is called a quasi-Frobenius 

ring, and is two-sided Artinian and two-sided injective, (Lam 1999, Th. 

15.1). An important module theoretic property of quasi-Frobenius rings 

is that the projective modules are exactly the injective modules. 

Lemma . Baer’s Criterion: Let R be a ring with identity. A unitary 

Rmodule J is injective if and only if for every left ideal L of R, any R-

module homomorphism L −→ J may be extended to an R-module 

homomorphism R −→ J. 

Proof. To say that f : L −→ J may be extended to R means there is a 

homomorphism h : R −→ J such that the diagram is commutative. 

Clearly, such an h always exists if J is injective. Conversely, suppose J 

has the stated extension property and suppose we are given a diagram of 

module homomorphisms 

with top row exact. To show that J is injective we must find a 

homomorphism h : B −→ J with hg = f. Let S be the set of all R-module 

homomorphismsh : C −→ J, where Im g   C   B. S is non empty since 

fg−1 : Im g −→ J is an element of S (g is a monomorphism). Partially 

order S by extension : h1 ≤ h2 iff Dom h1   Dom h2 and h2 | Dom h1 = 

h1. We can verify that the hypotheses of Zorn‘s Lemma are satisfied and 

conclude that S contains a maximal element h : H −→ J with hg = f. We 

shall complete the proof by showing H = B. 

If H 6= B and b ∈ B − H, then L = {r ∈ R | rb∈ H} is left ideal of R. The 

map L −→ J given by r 7→ h(rb) is a well- defined R-module 

homomorphism. By the hypothesis there is a R-module homomorphism k 

: R −→ J such that k(r) = h(rb) for all r ∈ L. Let c ∈k(1R) and define a 

map h¯ : H + Rb −→ J by a + rb 7→ h(a) + rc. We claim that h¯ is well-

defined. For if a1 + r1b = a2 + r2b ∈ H + Rb, then a1 − a2 = (r2 − r1)b∈ 



Notes 

52 

H T Rb. Hence r2 − r1 ∈ L and h(a1) − h(a2) = h(a1 − a2) = h((r2 − r1)b) 

= k(r2 − r1) = (r2 − r1)k(1R) = (r2 − r1)c. Therefore, h¯ : R + Rb −→ J is 

an R-module homomorphism that is an element of the set S. This 

contradicts. 

themaximality of h since b /∈ H and hence H $ H + Rb. Therefore, H = B 

and J is injective. 

Example:  If R is a ring with identity, P is a projective R-module and f : 

M → P is an epimorphism of R-modules then M ∼= P ⊕ Ker(f). 

Proof. We have a short exact sequence 0 −→ Ker(f)−→M f −→ P −→ 0 

Theorem. If R is a PID, F is a free R-module of a finite rank, and M ⊆ F 

is a submodule then M is a free module and rank M ≤ rank F. 

Definition. An R-module P is a projective module if there exists an 

Rmodule Q such that P ⊕ Q is a free R-module. 

Proposition 1.4: For an A-module P, the following are equivalent:  

(a) P is projective.  

(b) The functorHomA(P, •) : A-Mod → Ab is exact.  

(c) Every A-linear map onto P has a section.  

(d) Every exact sequence 0 → M → N → P → 0 in A-Mod splits. 

 (e) P is a direct summand of a free A-module. 

 Proof. (a) ⇒ (b). The functorHomA(P, •) is already left exact, so the 

only thing to verify is that for every surjective A-linear map M → N, the 

induced map HomA(P, M) → HomA(P, N) is surjective. But this is just a 

rewording.. 

(b) ⇒ (c). Let M  P be an A-linear map. Then by (b) there exists a map s : 

P → M such that f s = idP, which is precisely what we want.  

(c) ⇒ (d). This is one of the avatars of the well-known splitting lemma 

for exact sequences.1 

(d) ⇒ (e). For every A-module P we can always find a surjective A-

linear map φ : N → P with N free.2 By (d), the exact sequence 0 → Ker 

φ → N f → 2 For example, we can take N to be the free A-module 
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generated by the elements of P. P → 0 splits, so that P is a direct factor 

of the free module N.  

(e) ⇒ (a). First assume that P = L λ∈ΛAλ is free. Let f : Q R and g : P → 

R be A-linear maps and take an A-basis {aλ}λ∈Λ for P. Since f is 

surjective, we can lift each aλ to some element bλ∈ Q. Then we can 

define an A-linear map h : P → Q by sending each aλ to bλ and 

extending by A-linearity; clearly f h = g, as desired. In the general case, 

Let P ∼= M ⊕ N with M free and let f and g be as before. The map g can 

be extended to g˜ : M → R, (p, n) 7→ g(p). As M is free, g˜ can be lifted 

to ˜h : M → Q. Then h = ˜h|P : P → Q is an A-linear map satisfying f h = 

g, whence P is projective. 

Note. For a ring R and R-modules L, M let HomR(L, M) be the set of all 

R-module homomorphisms ϕ: L → M. Notice that HomR(L, M) is an 

abelian group (with respect to the pointwise addition of 

homomorphisms). Moreover, for any homomorphism of R-modules f : M 

→ N the map 

 f∗ :HomR(L, M) → HomR(L, N), f∗(ϕ) = f ◦ ϕ is a homomorphism of 

abelian groups.  

This defines a functor 

HomR(L, −): R-Mod −→ Ab 

 This functor is in general not exact. Take e.g. R = Z, L = Z/2Z. We have 

a short exact sequence of abelian groups:  

0 → Z ·2 −→ Z −→ Z/2Z → 0 

On the other hand the sequence  

0 → HomZ(Z/2Z, Z) −→ HomZ(Z/2Z, Z) −→ HomZ(Z/2Z, Z/2Z) → 0 

is not exact since HomZ(Z/2Z, Z) ∼= 0 and HomZ(Z/2Z, Z/2Z) ∼= 

Z/2Z. 

Theorem (Baer’s Criterion). Let R be a ring with identity and let J be 

an R-module. The following conditions are equivalent.  

1) J is an injective module. 

 2) For every left ideal I C R and for every homomorphisms of R-

modules f : I → J there is a homomorphism ¯f : R → J such ¯f|I = f. 
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Proof. 1) ⇒ 2) Given a homomorphism f : I → J we have a diagram 

where i: I ,→ R is the inclusion homomorphism. By the definition of an 

injective module there is a homomorphism ¯f : R → J such that f = ¯f i = 

¯f|I 

2) ⇐ 1) Assume that J is an R-module satisfying 2). It is enough to show 

that if M is an R-module, N is a submodule of M, and f : N → J is an 

Rmodule homomorphism then there exists a homomorphism ¯f : M → J 

such that ¯f|N = f 

Let S be a set of all pairs (K, fK) such that 

 (i) K is a submodule of M such that N ⊆ K ⊆ M  

(ii) fK : K → J is a homomorphism such that fK|N = f 

Define partial ordering on S as follows:  

(K, fK) ≤ (K0 , fK0) if K ⊆ K0 

and fK0|K = fK Check: assumptions of Zorn‘s Lemma are satisfied in S, 

and so S contains a maximal element (K0, fK0 ).  

It will suffice to show that K0 = M. Assume, by contradiction, that K0 

6= M, and let m0 ∈ M − K0. Define  

I := {r ∈ R | rm0 ∈ K0} 

Check: I is an ideal of R and the  

map g : I → J, g(r) = fK0 (rm0) 

is a homomorphism of R-modules. By the assumptions on J we have a 

homomorphism g¯: R → J such that g¯|I = g. Define 

K0 + Rm0 := {k + rm0 | k ∈ K, r ∈ R} 

Check: K0 + Rm0 is a submodule of M and the  

map f 0 : K0 + Rm0 → J, f0 (k + rm0) = fK0 (k) + ¯g(r) 

is a well defined homomorphism of R-modules such that f 0 |N = f. This 

shows that (K0 + Rm0, f0 )∈ S. We also have 

(K0, fK0 )< (K0 + Rm0, f0 ) 

 This is impossible since by assumption (K0, fK0 ) is a maximal element 

in S. 
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Corollary. Let R be an integral domain and let K the field of fractions of 

R. Then K is an injective R-module.  

Proof. Let I be an ideal of R and let f : I → K be a homomorphism of 

Rmodules. For 0 6= r, s ∈ I we have 

rf(s) = f(rs) = sf(r) 

As consequence in K we have f(r)/r = f(s)/s for any 0 6= r, s ∈ I. Denote 

this element by a. Define 

¯f : R → K, ¯f(r) := ra 

 Check: ¯f is a homomorphism of R-modules and ¯f|I = f. 

9.3 SUMMARY  

We study in this section free module and its examples. We study 

injective module and projective module. We study self injective ring. We 

study change of ring and self injective module over ring. We study 

commutative example and artinian examples. We study split exact 

sequence. We study the category of projective module. We study 

projective module over polynomial module.  

1. A module P is projective if and only if for every surjective module 

homomorphism f : N ↠ M and every module 

homomorphism g : P → M, there exists a 

homomorphism h : P → N such that fh = g. 

2. Let P be a finitely generated projective module over a commutative 

ring R and X be the spectrum of R. The rank of P at a prime ideal in X 

is the rank of the free R-module M. 

3. Every free module F over a ring R with identity is projective. 

4. Let R be a ring. The following conditions on an R-module P are 

equivalent.  

(a) P is projective; 

 (b) every short exact sequence 0 −→ A f −→ B g −→ P −→ 0 is split 

exact (hence B ∼= A ⊕ P);  

(c) there is a free module F and an R-module K such that F ∼= K ⊕ P.  
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5.  If R is a PID, F is a free R-module of a finite rank, and M ⊆ F is a 

submodule    then M is a free module and rank M ≤ rank F. 

6. Baer‘s Criterion. Let R be a ring with identity and let J be an R-

module. The following conditions are equivalent.  

a) J is an injective module. 

b) For every left ideal I C R and for every homomorphisms of R-

modules f : I →  J there is a homomorphism ¯f : R → J such ¯f|I = f. 

9.4 KEYWORD 

Injective :An injective function or injection or one-to-one function 

is a function that preserves distinctness 

Projective :Relating to the unconscious transfer of one's desires or 

emotions to another person 

Integral Domain :An integral domain is basically defined as a 

nonzero commutative ring in which the product of any two nonzero 

elements is nonzero 

9.5 QUESTIONS FOR REVIEW  

Q. 1. Projective but not free: If R = Z6, then Z3 and Z2 are Z6-modules 

and there is Z6-module isomorphism Z6 ∼= Z2 ⊕ Z3. Hence both Z2 

and Z3 are projective Z6-modules that are not free Z6-modules. 

Q. 2 If R is a ring with identity then every free R-module is projective. 

Q. 3 Z/2Z and Z/3Z are non-free projective Z/6Z-modules. 

Q. 4 Let R be a ring with identity and let P be an R-module. The 

following conditions are equivalent.  

1) P is a projective module.  

2) For any homomorphism f : P → N and an epimorphism g : M → N 

there is a homomorphism h: P → M such that the following diagram 

commutes: 

3) Every short exact sequence 0 → N f −→ M g −→ P → 0 splits. 
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Q. 5 If R is a ring with identity, P is a projective R-module and f : M → 

P is an epimorphism of R-modules then M ∼= P ⊕ Ker(f). 
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UNIT 10 - FLAT MODULE, 

GENERATED MODULE OVER PID 
 

STRUCTURE 
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10.1.2 Flat Ring Extensions 

10.1.3 Local Aspect of Flatness over Commutative Ring 
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Over P.I.D. 
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10.7  Suggestion Reading And References 

10.8 Answer to check your progress 

10.0 OBJECTIVE 

 We learn in this unit Flat module , Flat Cove 
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 Learn Finitely Generated Module Over PID 

 Learn Non-Finitely Generated Module 

 Learn Chinese Remainder Theorem For PID 

 Learn Finitely Generated Abelian Group 

10.1 INTRODUCTION : FLAT MODULE 

In homological algebra and algebraic geometry, a flat module over 

a ring R is an R-module M such that taking the tensor 

product over R with M preserves exact sequences. A module is faithfully 

flat if taking the tensor product with a sequence produces an exact 

sequence if and only if the original sequence is exact. 

A module  over a unit ring  is called flat iff the tensor product 

functor  (or, equivalently, the tensor product functor ) is 

an exact functor. 

For every -module,  obeys the implication 

 

which, in general, cannot be reversed. 

A -module is flat iff it is torsion-free: hence  and the infinite direct 

product  are flat -modules, but they are not projective. In fact, 

over a Noetherian ring or a local ring, flatness implies projectivity only 

for finitely generated modules. This property, together with Serre's 

problem, allows it to be concluded that the three above implications are 

equivalences if  is a finitely generated module over a polynomial 

ring , where  is a field. 

Flatness was introduced by Serre (1956) in his 

paper GéometrieAlgébriqueetGéométrieAnalytique. See also flat 

morphism. 
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10.1.1 Characterizations Of Flatness 

Since tensoring with M is, for any module M, a right exact functor 

between the category of R-modules and abelian groups), M is flat if 

and only if the preceding functor is exact. 

It can also be shown in the condition defining flatness as above, it is 

enough to take M, the ring itself, and R a finitely 

generated ideal of R. 

Flatness is also equivalent to the following equational condition, 

which may be paraphrased by saying that R-linear relations that hold 

in M stem from linear relations which hold in R: for every linear 

dependency,  K with M and R, there exist a matrix M and an 

element R such that M and R Furthermore, M is flat if and only if the 

following condition holds: for every map F : F→M where F is a 

finitely generated free R-module, and for every finitely 

generated -submodule K of ker F the map F factors through a 

map g to a free -module g(K)=0 such that  

 

Examples and relations to other notions 

Flatness is related to various other conditions on a module, such as being 

free, projective, or torsion-free. This is partly summarized in the 

following graphic: 

 

Free or projective modules vs. flat modules 

Free modules are flat over any ring R. This holds since the functor 
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is exact. For example, vector spaces over a field are flat modules. 

Direct summands of flat modules are again flat. In 

particular, projective modules (direct summands of free modules) 

are flat. Conversely, for a commutative Noetherian 

ring R, finitely generated flat modules are projective. 

Further Permanence Properties 

In general, arbitrary direct sums and filtered colimits (also known 

as direct limits) of flat modules are flat, a consequence of the fact that the 

tensor product commutes with direct sums and filtered colimits (in fact 

with all colimits), and that both direct sums and filtered colimits 

are exact functors. In particular, this shows that all filtered colimits of 

free modules are flat. 

Lazard (1969) proved that the converse holds as well: M is flat if and 

only if it is a direct limit of finitely-generated free modules. As a 

consequence, one can deduce that every finitely-presented flat module is 

projective. The direct sum Mi is flat if and only if each Mi is flat. 

Products of flat R-modules need not in general be flat. In fact, Chase 

(1960) showed a ring R is coherent (i.e., any finitely generated ideal is 

finitely presented) if and only if arbitrary products of flat R-modules are 

again flat. 

10.1.2 Flat Ring Extensions 

If       is a ring homomorphism, S is called flat over R (or a flat R-

algebra) if it is flat as an R-module. For example, the polynomial 

ring R[t] is flat over R, for any ring R. Moreover, for any multiplicatively 

closed subset S of a commutative ring R, the localization ring R is flat 

over R. For example, Q is flat over Z (though not projective). 

Let S be a polynomial ring over a noetherian ring R and f € S a 

nonzerodivisor. Then S/fS  is flat over R if and only if f is primitive (the 

coefficients generate the unit ideal).
[5]

 This yields an example of a flat 

module that is not free. 

Kunz (1969) showed that a noetherian local ring R of 

positive characteristic p is regular if and only if the Frobenius 

morphism f : X→ Y  is flat and R is reduced. 
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Flat ring extensions are important in algebra, algebraic geometry and 

related areas. A morphism F : X→ Y of schemes is a flat morphism if, by 

one of several equivalent definitions, the induced map on local rings 

is a flat ring homomorphism for any point x in X. Thus, the 

above-mentioned properties of flat (or faithfully flat) morphisms 

established by methods of commutative algebra translate into 

geometric properties of flat morphisms in algebraic geometry. 

10.1.3 Local Aspects Of Flatness Over 

Commutative Rings 

In this section, the ring R is supposed to be commutative. In this 

situation, flatness of R-modules is related in several ways to the notion 

of localization: M is flat if and only if the module Mp is a flat Rp-module 

for all prime ideals p of R. In fact, it is enough to check the latter 

condition only for the maximal ideals, as opposed to all prime ideals. 

This statement reduces the question of flatness to the case of 

(commutative) local rings. 

If R is a local (commutative) ring and either M is finitely generated or the 

maximal ideal of R is nilpotent (e.g., an artinian local ring) then the 

standard implication "free implies flat" can be reversed: in this case M is 

flat if and if only if its free. 

The local criterion for flatness states: 

Let R be a local noetherian ring, S a local noetherian R-algebra 

with S   , and M a finitely generated S-module. Then M is flat 

over R if and only if  

The significance of this is that S need not be finite over R and we 

only need to consider the maximal ideal of R instead of an arbitrary 

ideal of R. 

The next criterion is also useful for testing flatness: 

Let R, S be as in the local criterion for flatness. 

Assume S is Cohen–Macaulay and R is regular. Then S is flat 

over R if and only if  
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10.1.4 Flat Resolutions 

A flat resolution of a module M is a resolution of the form  

where the Fi are all flat modules. Any free or projective resolution is 

necessarily a flat resolution. Flat resolutions can be used to compute 

the Tor functor. 

The length of a finite flat resolution is the first subscript n such that Fn is 

nonzero and Fi = 0 for i > n. If a module M admits a finite flat resolution, 

the minimal length among all finite flat resolutions of M is called its flat 

dimension and denoted fd(M). If M does not admit a finite flat resolution, 

then by convention the flat dimension is said to be infinite. As an 

example, consider a module M such that fd(M) = 0. In this situation, the 

exactness of the sequence 0 → F0 → M → 0 indicates that the arrow in 

the center is an isomorphism, and hence M itself is flat. 

In some areas of module theory, a flat resolution must satisfy the 

additional requirement that each map is a flat pre-cover of the kernel of 

the map to the right. For projective resolutions, this condition is almost 

invisible: a projective pre-cover is simply an epimorphism from a 

projective module. These ideas are inspired from Auslander's work in 

approximations. These ideas are also familiar from the more common 

notion of minimal projective resolutions, where each map is required to 

be a projective cover of the kernel of the map to the right. However, 

projective covers need not exist in general, so minimal projective 

resolutions are only of limited use over rings like the integers. 

10.1.5 Flat Covers 

While projective covers for modules do not always exist, it was 

speculated that for general rings, every module would have a flat cover, 

that is, every module M would be the epimorphic image of a flat 

module F such that every map from a flat module onto M factors 

through F, and any endomorphism of F over M is an automoprhism. 

This flat cover conjecture was explicitly first stated in (Enochs 1981, p 

196). The conjecture turned out to be true, resolved positively and 

proved simultaneously by L. Bican, R. El Bashir and E. Enochs.
[15]

 This 

was preceded by important contributions by P. Eklof, J. Trlifaj and J. Xu. 
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Since flat covers exist for all modules over all rings, minimal flat 

resolutions can take the place of minimal projective resolutions in many 

circumstances. The measurement of the departure of flat resolutions from 

projective resolutions is called relative homological algebra, and is 

covered in classics such as (MacLane 1963) and in more recent works 

focussing on flat resolutions such as (Enochs&Jenda 2000). 

10.2 STRUCTURE THEOREM FOR 

FINITELY GENERATED MODULES 

OVER A PRINCIPAL IDEAL DOMAIN 

In mathematics, in the field of abstract algebra, the structure theorem 

for finitely generated modules over a principal ideal domain is a 

generalization of the fundamental theorem of finitely generated abelian 

groups and roughly states that finitely generated modules over a principal 

ideal domain can be uniquely decomposed in much the same way that 

integers have a prime factorization. The result provides a simple 

framework to understand various canonical form results for square 

matrices over fields. 

10.2.1 Statement 

When a vector space over a field F has a finite generating set, then one 

may extract from it a basis consisting of a finite number n of vectors, and 

the space is therefore isomorphic to F
n
. The corresponding statement 

with the F generalized to a principal ideal domain R is no longer true, 

since a basis for a finitely generated module over R might not exist. 

However such a module is still isomorphic to a quotient of some 

module R
n
 with n finite (to see this it suffices to construct the morphism 

that sends the elements of the canonical basis of R
n
 to the generators of 

the module, and take the quotient by its kernel.) By changing the choice 

of generating set, one can in fact describe the module as the quotient of 

some R
n
 by a particularly simple submodule, and this is the structure 

theorem. 

The structure theorem for finitely generated modules over a principal 

ideal domain usually appears in the following two forms. 
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10.2.2 Fundamental Theorem of Arithmetic  
 

This theorem says that any integer is uniquely expressible as a product of 

prime numbers. In terms of abstract algebra, it says that the ring of 

integers Z is a Unique Factorization Domain. (Of course we already 

know this, since Z is a Euclidean Domain, and Euclidean Domain =⇒ 

Principal Ideal Domain =⇒ Unique Factorization Domain.) 

Fundamental theorem of algebraThis says that any polynomial with 

coefficients from C factors into a product of linear factors. In terms of 

abstract algebra, it says that the primes in the Euclidean Domain C[x] are 

all linear polynomials of the form ax + b where a 6= 0. 

Fundamental theorem of finite abelian groupsThis says that every 

finite abelian group can be expressed uniquely as a product of p-groups. 

In this handout, the main goal is to understand and apply a new 

―fundamental theorem.‖ This theorem describes in precise detail the 

structure of a finitely-generated module over a P.I.D. Recall that if R is 

any ring, then an R-module M is an abelian group (we‘ll use + as the 

operation) such that we can multiply group elements from M by scalars 

from R. This multiplication by scalars is compatible with the group 

operation in all the usual ways: multiplication by scalars distributes over 

addition, etc. If N is any other R-module, then a map φ : M −→ N is an 

R-module homomorphism if it is a group homomorphism that is also R-

linear, i.e. φ(x + y) = φ(x) + φ(y) and φ(rx) = rφ(x). In other words, φ 

preserves addition and multiplication by scalars. The canonical example 

of a ring module that you should keep in mind is a vector space, where 

the scalars come from a field F. In this case, an F-module 

homomorphism is just a linear transformation. We will explore other 

very natural examples of ring modules in this handout. 

An R-module M is finitely-generated if there is a finite subset {x1, . . . , 

xn} in M such that if x is any element in M, there exist scalars {r1, . . . , 

rn} in R such that 

x = r1x1 + r2x2 + · · · + rnxn. 
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In other words, the set {x1, . . . ,xn} is a spanning set. If for every group 

element x the scalars ri are unique, then we call the set {x1, . . . ,xn} a 

basis for M. 

I‘ll be assuming throughout that you are conversant with the following 

terms: ring, unit, ideal, factor ring or quotient ring, field, Euclidean 

Domain, Principal Ideal Domain, Integral Domain, prime element in a 

P.I.D., R-module, R-module homomorphism, etc. You should also be 

comfortable with basic linear algebra ideas, e.g. the correspondence 

between linear transformations and matrices, how a change of basis 

affects a matrix for a linear transformation, the notion of similar 

matrices, etc. 

Here is the theorem that is the showpiece of this handout (we will also 

refer to it as the Structure Theorem): 

10.2.3 Fundamental Theorem Of Finitely-

Generated Modules Over P.I.D. 
Let M be a (non-zero) finitely-generated R-module, where R is a P.I.D. 

Then there exist non-negative integers s and t and non-zero ring elements 

a1, a2, . . . , as for which  

M ∼= R/ha1i × R/ha2i × · · · × R/hasi × R t , 

where a1|a2| · · · |as. Moreover, this decomposition of M is unique in the 

following sense: if k and l are non-negative integers and b1, b2, . . . ,bk 

are ring elements satisfying b1|b2| · · · |bk for which  

M ∼= R/hb1i × R/hb2i × · · · × R/hbki × R l , 

then k = s, l = t, and hbii = haii for all 1 ≤ i ≤ s. 

The ai ‘s are called the invariant factors for the module M. The theorem 

says that the invariant factors for M are unique up to units. 

Application 1: The Structure Theorem and finite-dimensional vector 

spaces. 

Before proving the Structure Theorem, it might be profitable first to look 

at some applications. Intuitively, one should think of an R-module as an 

additive group M whose elements can be multiplied by scalars from the 
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ring R. So, when R = F is a field, any F-module is just a vector space. 

We would like to apply the Structure Theorem to finitely-generated 

vector spaces. An F-vector space V is finitely-generated as an F-module 

if there is a finite set of elements {v1, . . . , vn} in V such that if v is any 

element in V , then there exist scalars c1, . . . , cn for which, 

v = c1v1 + c2v2 + · · · cnvn. 

In other words, {v1, . . . ,vn} is a finite spanning set. We obtain our first 

corollary of the Structure Theorem: 

Corollary (Classification of Finitely-generated Vector Spaces) Let V 

be a finitely-generated vector space over a field F. Then as an F-module,  

V ∼= F t 

for some non-negative integer t. 

Proof. By the Structure Theorem, we may write 

V ∼= F/ha1i × F/ha2i × · · · × F/hasi × F t 

for non-zero field elements ai . Since each ai is non-zero, then each ai is 

invertible in F, and hence the ideal haii generated by ai is all of F. That 

is, F/haii = 0 for each i. So V ∼= F t . 

Of course, we call t the dimension of the vector space V . Is there ever a 

situation in which you would know that a vector space is finitely-

generated without already knowing its dimension? Yes, and here is an 

example: suppose V is finite-dimensional over F, and suppose W is any 

F-module. Let T : V −→ W be any linear transformation. We claim that 

T(V ) is finitely-generated as a submodule of W, and hence is finite-

dimensional. To see this, notice that T(V ) is a submodule, i.e. subspace, 

of W. (First, note that T(V ) is closed under subtraction: T(x) − T(y) = 

T(x − y). Second, T(V ) is closed under multiplication by scalars: λT(x) 

= T(λx).) Next, let {v1, . . . ,vt} be a generating set for V . It is easy to 

see that {T(v1), . . . , T(vt)} is a generating set for T(V ). 

Corollary A vector space V of dimension t has a basis of t elements. 

Moreover, if {v1, . . . ,vn} is a basis for V , then n = t. 
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Exercise Prove the previous corollary. 

Check in Progress-I 

Note: i) Write your answers in the space given below.  

Q. 1 Define Flat Module. 

Solution. 

……………………………………………………………………. 

………………………………………………………………………….. 

……………………………………………………………………….. 

Q. 2 Define PID. 

Solution. 

……………………………………………………………………. 

………………………………………………………………………….. 

……………………………………………………………………… 

10.2.4 Indecomposable Modules 

By contrast, unique decomposition into indecomposable submodules 

does not generalize as far, and the failure is measured by the ideal class 

group, which vanishes for PIDs. 

For rings that are not principal ideal domains, unique decomposition 

need not even hold for modules over a ring generated by two elements. 

For the ring R = Z[√−5], both the module R and its submodule M 

generated by 2 and 1 + √−5 are indecomposable. While R is not 

isomorphic to M, R ⊕ R is isomorphic to M ⊕ M; thus the images of 

the M summands give indecomposable submodules L1, L2 < R ⊕ R 

which give a different decomposition of R ⊕ R. The failure of uniquely 

factorizing R ⊕ R into a direct sum of indecomposable modules is 

directly related (via the ideal class group) to the failure of the unique 

factorization of elements of R into irreducible elements of R. 

However, over a Dedekind domain the ideal class group is the only 

obstruction, and the structure theorem generalizes to finitely generated 
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modules over a Dedekind domain with minor modifications. There is still 

a unique torsion part, with a torsionfree complement (unique up to 

isomorphism), but a torsionfree module over a Dedekind domain is no 

longer necessarily free. Torsionfree modules over a Dedekind domain are 

determined (up to isomorphism) by rank and Steinitz class (which takes 

value in the ideal class group), and the decomposition into a direct sum 

of copies of R (rank one free modules) is replaced by a direct sum into 

rank one projective modules: the individual summands are not uniquely 

determined, but the Steinitz class (of the sum) is. 

10.2.5 Non-Finitely Generated Modules 

Similarly for modules that are not finitely generated, one cannot expect 

such a nice decomposition: even the number of factors may vary. There 

are Z-submodules of Q
4
 which are simultaneously direct sums of two 

indecomposable modules and direct sums of three indecomposable 

modules, showing the analogue of the primary decomposition cannot 

hold for infinitely generated modules, even over the integers, Z. 

Another issue that arises with non-finitely generated modules is that 

there are torsion-free modules which are not free. For instance, consider 

the ring Z of integers. Then Q is a torsion-free Z-module which is not 

free. Another classical example of such a module is the Baer–Specker 

group, the group of all sequences of integers under termwise addition. In 

general, the question of which infinitely generated torsion-free abelian 

groups are free depends on which large cardinals exist. A consequence is 

that any structure theorem for infinitely generated modules depends on a 

choice of set theory axioms and may be invalid under a different choice. 

10.2.6 Fundamental Theorem Of Finite Abelian 

Groups 
Any finite abelian group is expressible uniquely as a product of p-groups. 

That is, if G is a finite abelian group, then there exist primes pi (1 ≤ i ≤ k) 

and positive integers αi for which  

G ∼= Zp α1 1 × · · · × Z p αk k . 

Moreover, if there are primes qj (1 ≤ j ≤ l) and positive integers βj for 

which 
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G ∼= Z q β1 1 × · · · × Z q βl l , 

then l = k, and after appropriately permuting the list of qj ‘s we have  

pi = qi and αi = βi for 1 ≤ i ≤ k. 

 Guided Discovery Proof. We proceed in steps. 

1 Use the Structure Theorem to write  

G ∼= Za1 × · · · × Zas × Z t 

for non-negative integers s and t and for positive integers ai for 

which a1| · · · |as. Say why we must have t = 0.  

2. If a is a positive integer, use the Fundamental Theorem of Arithmetic 

to express a as a product of powers of distinct primes, i.e.  

a = p α1 1 p α2 2 · · · p 

αnn for distinct primes p1, . . . , pn. What theorem allows us to conclude 

that 

Za∼= Zp α1 1 × · · · × Zp 

αnn ? Hint: This theorem is prominently featured in one of the 

appendices.  

3. Now put these two items together to complete the proof of the 

existence of a decomposition for G as claimed in the Corollary statement.  

4. The uniqueness of this decomposition of G into p-groups follows from 

the uniqueness of the invariant factors. . . how? 

10.2.7 Chinese Remainder Theorem For P.I.D.’ 
 Let R be a P.I.D., and let q1, q2, . . . ,qk be relatively prime, i.e. for all i 

6= j, hqii + hqji = R. (In other words, some linear combination of qi and 

qj is equal to 1.) Then 

R/hq1q2 · · · qki = R/hq1i ∩ · · · ∩ hqki∼= R/hq1i × · · · × R/hqki 

You are asked to prove this in Exercise #6 in the problem set (the proof 

should not be too different from the proof of the Chinese Remainder 

Theorem for Z sketched in an earlier handout). So now suppose that we 

have a finitely-generated R-module M (where R is a P.I.D.) and that a ∈ 



Notes 

72 

R is one of the invariant factors for M. As above, we can write a = p α1 1 

p α2 2 · · · p αk k . Apply the Chinese Remainder Theorem to R/hai by 

setting qi := p αii for each i. Each qi is an elementary divisor for M. (This 

observation basically coincides with Exercise #7, where you are then 

asked to apply the result to find the elementary divisors for R[x]/hx 4 − 

1i.) We now have this principle: 

To obtain the elementary divisors for a finitely-generated R-module M, 

apply the Chinese Remainder Theorem for P.I.D.‘s to R/hai for each 

invariant factor a. 

Exercise Find the elementary divisors for the R[x]-module 

R[x]/hx − 2i × R[x]/hx 2 + x − 6i × R[x]/hx 3 − x 2 − 8x + 12i. 

The next question is: If we have a list of the elementary divisors of M, 

can we recover the invariant factors? The answer is ―Yes,‖ and to do so 

we can use a simple algorithm. This procedure says first to find the 

highest power of each distinct prime appearing in the list of elementary 

divisors and multiply these together. This will be the largest invariant 

factor. Next, go through the list of remaining elementary divisors and 

pick out the highest power of each distinct prime in the remaining list. 

Multiply these together to get the second largest invariant factor. 

Continue this procedure until the elementary divisors are all used up., 

you are asked to carry this out for a specific abelian group with a given 

list of elementary divisors. 

ExampleLet R be a PID. Then, every nonempty set of ideals of R has a 

maximal element. 

Proof. Let S be the set of all proper ideals of R. It follows that S is non-

empty and it is partially ordered by inclusion. Let I1 ⊆ I2 ⊆ ... be an 

arbitrary increasing chain of ideals in S. Let I=S n In. Since the chain of 

In‘s are nonempty, it follows that I is nonempty. I is an ideal. Since R is 

a PID, I = (a). We find that a ∈ I = S n In so a ∈ In for some n. We get In 

= In+1 = .... Each chain of ideals has an upper bound. By Zorn‘s lemma, 

the nonempty set of I 0 n s of R has a maximal element, the maximal 

ideal containing I. 
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Definition . Let r be a nonzero element of R that is not a unit. The 

element r is called irreducible in R, if whenever r = ab with a, b ∈ R, at 

least one of a or b must be a unit in R. Otherwise, r is reducible. 

Definition  A nonzero element p ∈ R is called prime if the ideal (p) 

generated by p is a prime ideal. 

Lemma . In an integral domain, a prime element is always irreducible.  

Proof . If p is a prime element, then (p) is a prime ideal. Let (p) be some 

arbitrary nonzero ideal such that p = ab where a, b ∈ R. Clearly, ab = p ∈ 

(p). By the definition of a prime ideal, it follows that either p divides a or 

p divides b. Without loss of generality, suppose a ∈ (p). Then, a = pm 

where m ∈ R. We see that a = pm = abm so bm = 1. It follows that b is a 

unit. Therefore, we have shown that in a integral domain a prime element 

is always irreducible. 

Definition. A Unique Factorization Domain (UFD) is an integral 

domain R in which every nonzero element r ∈ R that is not a unit has the 

following two properties: 

 (1) r can be written as a finite product of irreducibles pi of R (not 

necessarily distinct): r = p1p2...pn and  

(2) this decomposition is unique up to associates: if r = r1r2...rm is 

another factorization of r into irreducibles, then m = n and there is some 

renumbering of the factors so that pi is associate to ri for i = 1, 2, ..., n. 

Proposition . Every Principal Ideal Domain is a Unique Factorization 

Domain. 

Proof . First we show that the decomposition exists. Let R be a arbitrary 

principal ideal domain. Suppose P is the set of all elements in R that do 

not admit a finite decomposition into a finite product of irreducibles. If P 

is empty, we are done (for the existence part)., there is a maximal 

element x in P (in the sense the ideal generated by x is maximal among 

all the ideals generated by a single element in P P ). By the assumption 

on , x cannot be irreducible (otherwise it has a decomposition into a 

finite product of irreducibles, namely x = x). So x is reducible and we 
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may write x = yz with y, z both not units. So (x) $ (y) and (x) $ (z). By 

maximality of x in P, we have y 6∈ P and z 6∈ P. So y and z can be 

written as finite products of irreducibles; as a result, x can be written as a 

finite product of irreducibles, a contradiction. So P must be empty and 

thus every x ∈ R can be decomposed into a finite product of irreducible 

Then, we show that the decomposition is unique up to associates in R by 

induction on m prime ideals. If r = p where p is a prime ideal, then it 

follows that another decomposition of r will be the same since there is 

only one factorization of r. Assume, by way of the inductive hypothesis, 

that uniqueness holds for m prime factors. Suppose r1...rmrm+1 = r = 

u1p1...pn. By the definition of a prime ideal, rm+1 must divide one of the 

p 0 i s on the right hand side so rm+1 = u1pi . After cancelling the term 

rm+1 on the left hand side, it follows from our inductive hypothesis that 

decomposition is unique up to associates for m prime ideals. Hence, 

induction holds. 

We will now turn our attention toward the Chinese Remainder Theorem 

for Modules. This theorem will help us derive one form of the Structure 

Theorem for Finitely Generated Modules over a Principal Ideal Domain. 

Check In Progress-II 

Note: i) Write your answers in the space given below.  

Q. 1State Chinese Remainder Theorem. 

Solution : 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

Q.2State UFD. 

Solution : 

…………………………………………………………………………… 

…………………………………………………………………………… 
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…………………………………………………………………………… 

10.3 FINITELY-GENERATED ABELIAN 

GROUPS 

Structure Theorem for Finitely-Generated Abelian Groups. Let G be a 

finitely-generated abelian group. Then there exist  

• a nonnegative integer t and (if t > 0) integers 1 < d1 | d2 | · · · | dt,  

• a nonnegative integer r such that G takes the form 

G ≈ Z/d1Z ⊕ Z/d2Z ⊕ · · · ⊕ Z/dtZ⊕ Z ⊕r . 

The integers d1, . . . ,dt are called the elementary divisors of G. The 

nonnegative integer r is called the rank of G. The elementary divisors and 

the rank of G are unique. The case t = r = 0 is understood to mean that G 

is trivial.  

The argument to be given here is chosen for its resemblance to 

techniques that one sees in a linear algebra course and for its visual 

layout. However, the reader should be aware that the argument takes for 

granted at the outset that the finitelygenerated abelian group G has a 

presentation, meaning a description in terms of its generators and 

relations among them. We will return later in the semester to the fact that 

a presentation exists. 

Proof. The group G is described by a set of r nontrivial integer-linear 

relations on a minimal set of g generatorsa11x1 + a12x2 + · · · + a1gxg = 

0 a21x1 + a22x2 + · · · + a2gxg = 0 . . . . . . ar1x1 + ar2x2 + · · · + argxg 

= 0 

Here we assume that g > 0, otherwise G is trivial and the result is clear. 

Also we assume that r > 0 since if there are no relations then G ≈ Z ⊕g 

and we are done. The circumstance that in practice one does not initially 

know whether a set of generators is minimal will be addressed later in 

the handout. The relations rewrite more concisely as  

Xg j=1 aijxj = 0, i = 1, . . . , r. 

 Even more concisely, they encode as an r × g integer matrix,  
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A = [aij ]r×g. 

We will now prove the structure theorem for finitely generated abelian 

groups, since it will be crucial for much of what we will do later. 

Let  denote the ring of integers, and for each 

positive integer  let  denote the ring of integers modulo , 

which is a cyclic abelian group of order  under addition. 

Definition 3.0.1 (Finitely Generated)   A group  is if there 

exists  such that every element of  can be obtained 

from the . 

Theorem 3.0.2 (Structure Theorem for Abelian Groups)   Let  be a 

finitely generated abelian group. Then there is an isomorphism 

 

where  and . Furthermore, 

the  and  are uniquely determined by . 

We will prove the theorem as follows. We first remark that any subgroup 

of a finitely generated free abelian group is finitely generated. Then we 

see that finitely generated abelian groups can be presented as quotients of 

finite rank free abelian groups, and such a presentation can be 

reinterpreted in terms of matrices over the integers. Next we describe 

how to use row and column operations over the integers to show that 

every matrix over the integers is equivalent to one in a canonical 

diagonal form, called the Smith normal form. We obtain a proof of the 

theorem by reinterpreting in terms of groups. 

Proposition 3.0.3   Suppose  is a free abelian group of finite rank , 

and  is a subgroup of . Then  is a free abelian group generated 

by at most  elements. 

The key reason that this is true is that  is a finitely generated module 

over the principal ideal domain . We will give a complete proof of a 
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beautiful generalization of this result in the context of Noetherian rings 

next time, but will not prove this proposition here. 

 

Corollary 3.0.4   Suppose  is a finitely generated abelian group. Then 

there are finitely generated free abelian groups  and  such 

that . 

Proof. Let  be generators for . Let  and 

let  be the map that sends the th 

generator  of  to . Then  is a surjective 

homomorphism, the kernel  of  is a finitely generated free abelian 

group. This proves the corollary.  

Suppose  is a nonzero finitely generated abelian group. By the 

corollary, there are free abelian groups  and  such 

that . Choosing a basis for , we obtain an 

isomorphism , for some positive integer . By 

Proposition 3.0.4, , for some integer  with , 

and the inclusion map  induces a map . This 

homomorphism is left multiplication by the  matrix  whose 

columns are the images of the generators of  in . The of this 

homomorphism is the quotient of  by the image of , and the 

cokernel is isomorphic to . By augmenting  with zero columns on 

the right we obtain a square  matrix  with the same cokernel. 

The following proposition implies that we may choose bases such that 

the matrix  is diagonal, and then the structure of the cokernel 

of  will be easy to understand. 
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Proposition 3.0.5 (Smith normal form)   Suppose  is 

an  integer matrix. Then there exist invertible integer 

matrices  and  such that  is a diagonal matrix with 

entries , 

where  and . This is called the Smith normal 

form of . 

 

roof. The matrix  will be a product of matrices that define elementary 

row operations and  will be a product corresponding to elementary 

column operations. The elementary operations are: 

1. Add an integer multiple of one row to another (or a multiple of 

one column to another). 

2. Interchange two rows or two columns. 

3. Multiply a row by . 

Each of these operations is given by left or right multiplying by an 

invertible matrix  with integer entries, where  is the result of 

applying the given operation to the identity matrix, and  is invertible 

because each operation can be reversed using another row or column 

operation over the integers. 

To see that the proposition must be true, assume  and perform the 

following steps : 

1. By permuting rows and columns, move a nonzero entry 

of  with smallest absolute value to the upper left corner of . 

Now attempt to make all other entries in the first row and 

column 0 by adding multiples of row or column 1 to other rows 

(see step 2 below). If an operation produces a nonzero entry in the 

matrix with absolute value smaller than , start the process 
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over by permuting rows and columns to move that entry to the 

upper left corner of . Since the integers  are a decreasing 

sequence of positive integers, we will not have to move an entry 

to the upper left corner infinitely often. 

2. Suppose  is a nonzero entry in the first column, with . 

Using the division algorithm, write , 

with . Now add  times the first row to the th 

row. If , then go to step 1 (so that an entry with absolute 

value at most  is the upper left corner). Since we will only 

perform step 1 finitely many times, we may assume . 

Repeating this procedure we set all entries in the first column 

(except ) to 0. A similar process using column operations sets 

each entry in the first row (except ) to 0. 

3. We may now assume that  is the only nonzero entry in the 

first row and column. If some entry  of  is not divisible 

by , add the column of  containing  to the first column, 

thus producing an entry in the first column that is nonzero. When 

we perform step 2, the remainder  will be greater than 0. 

Permuting rows and columns results in a smaller . 

Since  can only shrink finitely many times, eventually we 

will get to a point where every  is divisible by . 

If  is negative, multiple the first row by . 

After performing the above operations, the first row and column 

of  are zero except for  which is positive and divides all other 

entries of . We repeat the above steps for the matrix  obtained 

from  by deleting the first row and column. The upper left entry of the 
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resulting matrix will be divisible by , since every entry of  is. 

Repeating the argument inductively proves the proposition.  

Example 3.0.6   The matrix  is equivalent to  and the 

matrix  is equivalent to  Note that the 

determinants match, up to sign. 

Proof. [Theorem 3.0.3] Suppose  is a finitely generated abelian group, 

which we may assume is nonzero. As in the paragraph before 

Proposition 3.0.6, we use Corollary 3.0.5 to write  as a the cokernel of 

an  integer matrix . By Proposition 3.0.6 there are 

isomorphisms  and  such 

that  is a diagonal matrix with 

entries , 

where  and . Then  is isomorphic to the 

cokernel of the diagonal matrix , so 

 

(3.1) 

as claimed. The  are determined by , because  is the smallest 

positive integer  such that  requires at most  generators 

(we see from the representation) of  as a product that  has this 

property and that no smaller positive integer does). 

10.4 SUMMARY 

We Study inthis unit flat module over Principal Ideal Domain. We study 

finitely generated abelian group. We study Chinese remainder Theorem. 

We study finitely Flat cover and flat module. We study Fundamental 

Theorem of Arithmetic. We study flat ring extension. We also study 
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Fundamental theorem for finite abelian group. We study fundamental 

theorem for principal ideal domain. 

1. A module  over a unit ring  is called flat iff the tensor product 

functor  (or, equivalently, the tensor product functor ) 

is an exact functor. 

2. Fundamental theorem of finite abelian groupsThis says that every 

finite abelian group can be expressed uniquely as a product of p-

groups. 

3. An R-module M is finitely-generated if there is a finite subset {x1, . . 

. , xn} in M such that if x is any element in M, there exist scalars {r1, 

. . . , rn} in R  

such that x = r1x1 + r2x2 + · · · + rnxn. 

4. Let M be a (non-zero) finitely-generated R-module, where R is a 

P.I.D. Then there exist non-negative integers s and t and non-zero 

ring elements a1, a2, . . . , as for which  

M ∼= R/ha1i × R/ha2i × · · · × R/hasi × R t  

5. Let V be a finitely-generated vector space over a field F. Then as an 

F-module,  

V ∼= F t for some non-negative integer t. 

6. A Unique Factorization Domain (UFD) is an integral domain R in 

which every nonzero element r ∈ R that is not a unit has the 

following two properties: 

(a) r can be written as a finite product of irreducibles pi of R (not 

necessarily distinct): r = p1p2...pn and  

(b) this decomposition is unique up to associates: if r = r1r2...rm is 

another factorization of r into irreducibles, then m = n and there is 

some renumbering of the factors so that pi is associate to ri for i = 1, 

2, ..., n. 

10.5 KEYWORD 

Determinants :A quantity obtained by the addition of products of 

the elements of a square matrix according to a given rule 
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Invertiable :Capable of being inverted or subjected to inversion 

an invertible matrix. 

Decomposition :The state or process of rotting; decay 

Conjecture  :An opinion or conclusion formed on the basis of 

incomplete information 

10.6 QUESTIONS FOR REVIEW  

Q. 1 Let V be a t-dimensional F-vector space. Then the following are 

equivalent:  

1. The set {v1, . . . ,vt} is a basis for V .  

2. The set {v1, . . . ,vt} spans V .  

3. The set {v1, . . . ,vt} is linearly independent. 

Q. 2 A vector space V of dimension t has a basis of t elements. 

Moreover, if {v1, . . . ,vn} is a basis for V , then n = t. 

Q. 3 Let R be a PID. Then, every nonempty set of ideals of R has a 

maximal element. 

Q. 4 Structure Theorem for Abelian Groups)   Let  be a finitely 

generated abelian group. Then there is an isomorphism 

 

where  and . Furthermore, 

the  and  are uniquely determined by . 

Q. 5 Suppose  is a free abelian group of finite rank , and  is a 

subgroup of . Then  is a free abelian group generated by at 

most  elements. 

Q. 6 (1) Abelian groups, which are the same thing as a Z-module  

(2) The field R is a R-module, Q-module, and Z-module.  
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(3) The free module of rank n over R as discussed 

Q. 7 (The First Isomorphism Theorem for Modules). Let M and N be R-

modules and let ϕ : M → N be an R-module homomorphism. Then, ker ϕ 

is a submodule of M and M/ ker ϕ ∼= ϕ(M). 

Q. 8 Suppose we have a ring R. Let n be a natural number. An example 

of a free module is Rn, which has a rank n over R. 
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10.8 ANSWER TO CHECK YOUR 

PROGRESS 

Check in Progress-I 

Answer Q. 1 Check in Section 1 

              Q 2 Check in Section 1.3 

Check in Progress-II 

Answer Q. 1 Check in Section 3.3 

              Q 2 Check in Section 3.3 
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UNIT 11 - EMBEDDING INJECTIVE 

MODULE 
 

STRUCTURE 

11.0  Objective 

11.1 Introduction : Injective Module 

11.1.1  Definition 

11.2   Embedding Module 

11.3 Injective Hulls 

11.4 Some Theorem and Lemma 

11.5  Exercise Solved 

11.6 Summary 

11.7  Keyword 

11.8  Questions for Review 

11.9 Suggestion Reading And References 

11.10  Answer to check your progress 

11.0 OBJECTIVE 

After study this unit we able to know about injective Embedding 

module. Learn to know R-Module.  

* Learn Injective Hulls 

* Learn Maximum Essense Extension 

* Learn a module without radical 

11.1 INTRODUCTION: INJECTIVE 

MODULE 
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This chapter discusses the pure-injective modules. A module is called 

pure-injective if it is a direct summand of every module in which it is a 

pure submodule. A non-zero pure-injective module is not slender; in fact, 

any non-zero homomorphic image of a pure-injective module is not 

slender. Thus any module which contains a non-zero homomorphic 

image of a pure-injective module, or contains a copy of R
ω
, is not 

slender. Pure-injective modules over general rings have been studied in 

great depth by algebraists and model-theorists. This chapter deals with 

abelian groups, i.e., Z-modules, which refers to simply as groups. The 

cotorsion groups are precisely the homomorphic images of pure-injective 

groups. It is not true that every subgroup of a cotorsion group is 

cotorsion; in fact every group is a subgroup of a divisible, hence 

cotorsion, group. 

In mathematics, especially in the area of abstract algebra known 

as module theory, an injective module is a module Q that shares certain 

desirable properties with the Z-module Q of all rational numbers. 

Specifically, if Q is a submodule of some other module, then it is already 

a direct summand of that module; also, given a submodule of a 

module Y, then any module homomorphism from this submodule 

to Q can be extended to a homomorphism from all of Y to Q. This 

concept is dual to that of projective modules. Injective modules were 

introduced in (Baer 1940) and are discussed in some detail in the 

textbook (Lam 1999, §3). 

Injective modules have been heavily studied, and a variety of additional 

notions are defined in terms of them: Injective cogenerators are injective 

modules that faithfully represent the entire category of modules. Injective 

resolutions measure how far from injective a module is in terms of 

the injective dimension and represent modules in the derived 

category. Injective hulls are maximal essential extensions, and turn out to 

be minimal injective extensions. Over a Noetherian ring, every injective 

module is uniquely a direct sum of indecomposable modules, and their 

structure is well understood. An injective module over one ring, may not 

be injective over another, but there are well-understood methods of 

changing rings which handle special cases. Rings which are themselves 

injective modules have a number of interesting properties and include 
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rings such as group rings of finite groups over fields. Injective modules 

include divisible groups and are generalized by the notion of injective 

objects in category theory. 

11.1.1 Definition 

A left module Q over the ring R is injective if it satisfies one (and 

therefore all) of the following equivalent conditions: 

 If Q is a submodule of some other left R-module M, then there exists 

another submodule K of M such that M is the internal direct 

sum of Q and K, i.e. Q + K = M and Q ∩ K = {0}. 

 Any short exact sequence 0 →Q → M → K → 0 of left R-

modules splits. 

 If X and Y are left R-modules, f : X → Y is an injective module 

homomorphism and g : X → Q is an arbitrary module 

homomorphism, then there exists a module 

homomorphism h : Y → Q such that hf = g, i.e. such that the 

following diagram commutes: 

 

 The contravariant functor Hom(-,Q) from the category of left R-

modules to the category of abelian groups is exact. 

Injective right R-modules are defined in complete analog 

• Every R-module M has an injective hull or injective envelope, denoted 

by ER(M), which is an injective module containing M, and has the 

property that any injective module containing M contains an isomorphic 

copy of ER(M). 

 • A nonzero injective module is indecomposable if it is not the direct 

sum of nonzero injective modules. Every injective R-module is a direct 

sum of indecomposable injective R-modules.  

• Indecomposable injective R-modules are in bijective correspondence 

with the prime ideals of R; in fact every indecomposable injective R-
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module is isomorphic to an injective hull ER(R/p), for some prime ideal 

p of R. 

 • The number of isomorphic copies of ER(R/p) occurring in any direct 

sum decomposition of a given injective module into indecomposable 

injectives is independent of the decomposition.  

• Let (R, m) be a complete local ring and E = ER(R/m) be the injective 

hull of the residue field of R. The functor (−) ∨ = HomR(−, E) has the 

following properties, known as Matlis duality: 

 (1) If M is an R-module which is Noetherian or Artinian, then M∨∨∼= 

M.  

(2) If M is Noetherian, then M∨ is Artinian. 

(3) If M is Artinian, then M∨ is Noetherian. 

Definition. Let A be an integral domain. A A-module D is divisible if for 

every d e D and every 0 $ A E A there exists c e D such that Ac = d. 

Note that we do not require the uniqueness of c. We list a few examples: 

 (a) As 71-module the additive group of the rationals Q is divisible. In 

this example c is uniquely determined.  

(b) As 71-module Q/Z is divisible. Here c is not uniquely determined.  

(c) The additive group of the reals IR, as well as IR/Z, are divisible. 

 (d) A non-trivial finitely generated abelian group A is never divisible. 

Indeed. A is a direct sum of cyclic groups, which clearly are not 

divisible. 

11.2 EMBEDDING MODULE  

Let & be a class of rings and let &‘ be the class of all couples (A, M) where A 

is an element of & and where n/I is an A-module. By a morphism of a 

couple (A, M) into a couple (A‘, M‘) we mean a couple (ar, p) such that  

a: is a homomorphism of rings of A into A‘; 
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 p is a homomorphism of Z-modules of M into M‘ and Qa E A Qm E M 

4am) = 44 &+  

Such a couple (01, p) will be called an embedding (of (A, M) into (A‘, 

M‘)) if ~1 and p are both one-one. The reader may translate in this 

terminology the problem discussed in the previous section. 

      Among the elements of &?‘ are all the couples (A, A,), also denoted 

by (A, A), where A is an element of & and A, is the ring A considered as 

a left A-module. We will be concerned with the following problem, 

which will be called for convenience the embedding problem:  

       Is it possible to embed any element (A, M) of M in an element of the 

form (B, B) of &! ? We will only treat a few examples, some of which 

will be exploited in Section 4. In all of them J/ is an elementary class (in 

the wider sense) of rings. 

Example 1 The embedding problem has a positive answer if ~2 is the 

class of (aZZ) commutative rings. 

Proof. Let (-4, M) b e an element of &‗. The following well-known 

multiplication transforms the additive group A x M into a commutative 

ring B: 

(a, .m) . (a‘, m‘) = (au‘, ain‘ -+ a‘m). 

The morphism (01, p) of (A, M) into (B, B) such that 

‗da E A a(a) = (a, 0); vm E M p(m) = (0, m) 

is an embedding. 

PROPOSITION . The embedding problem has a positive answer in the 

following cases: 

(i) &‘ is the class of division rings. 

(ii) d is the class of jields. 

Proof. Let (a, M) be an element of JBZ. Let E = (ei)icl be a basis of the 

d-module M. Let 01 be a (one-one) homomorphism of r-l into an element 

B of ~8 such that the dimension of the a(d)-module B is at least equal to 
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the dimension of the d-module M (such an CL clearly exists). Let f be a 

one-one map 

of the set E into a basis F of the a(A)-module B. We define /~:M--fBby It 

is then easy to check that the couple (or, p) is an embedding of (A, M) 

into (B, B). Before stating the main result of this section we need to 

recall some definitions and facts. 

Example Let A be a commutative absolutely flat ring. Then any A-

module is without radical.  

Proof. This is an immediate consequence of part of the two following 

facts: (VILLAMAYOR). For any Gng A the following conditions are 

eqzlivalent: 

 (1) Any simple A-module is injective.  

(2) Atiy (left) ideal is the intersection of (left) maximal ideals.  

(3) Any A-module is zuithout radical. (For background on the rings 

satisfying conditions (l), (2), (3), see [S]). 

Example The embedding problem has a negative answer in the 

following cases:  

(i) JZZ is the class of integral domains. 

(ii) & is th e c 1 ass o frzn . g s w I zzc ' h are elementarily 

equivalent to the ring Z of integers.  

Proof, Let us consider an element of Jz‘ of the form (2, M). It is easy to 

see that such an element can be embedded in an element of J&‘ of the 

form (A, -4) (if and) only if the Z-module M is torsion-free. 

THEOREM  Let JXI be an elementary class of rings. If d has a 

modelcompanion and if the embedding problem has a positive answer, 

then ~22 also has a model-companion. 

 Proof. It is clear that A?‘ is an elementary class. Let z?‗* denote the 

modelcompanion of JTZ and let A‘* denote the class of all pairs (A, M) 

where A is an element of &* and M is a free 8-module having a basis of 
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cardinal 1. One easily checks that A?* is an elementary class which is the 

modelcompanion of A. 

Example The class of p-rings has a model-completion. 

 Proof. It is enough to prove that the class of p-rings has a 

modelcompanion. Let us consider first the class of Boolean rings (p - 2). 

We claim that the class of atomless Boolean rings is the model-

companion of the class of Boolean rings. We recall first the following 

well-known facts:  

(a) An atomless Boolean ring is infinite.  

(b) A countable Boolean ring is atomless if and only if it is free on X, 

generators and therefore any two countable atomless Boolean rings are 

isomorphic.  

(c) It is possible to axiomatize the notion of atomless Boolean ring by a 

set of t/3 sentences. 

Check in Progress-I 

Note: i) Write your answers in the space given below.  

Q. 1 The embedding problem has a positive answer if ~2 is the class of 

(aZZ) commutative rings. 

Solution ………………………………………………………………… 

………………………………………………………………………… 

……………………………………………………………………………. 

Q. 2 Define Injective Module.  

Solution ………………………………………………………………… 

………………………………………………………………………… 

……………………………………………………………………………. 
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Theorem . Let A be a principal ideal domain. A A-module is injective 

if and only if it is divisible. 

Proof First suppose D is injective. Let d e D and 0 $ A E A. We have to 

show that there exists c e D such that Ac = d. Define a : A-->D by a(1) = 

d and p : A--+A by µ(1) = A. Since A is an integral domain, i; A = 0 if 

and only if i; = 0. Hence p is monomorphic. Since D is injective. there 

exists fl: A-+D such that /iµ = a. We obtain  

d=a(1)=/3µ(l)=/3(l)=2/3(11. 

Hence by setting c = /3(1) we obtain d = Ac. (Notice that so far no use is 

made of the fact that A is a principal ideal domain.)  

Now suppose D is divisible 

We have to show the existence of fl: B--+D such that /3µ = a. To 

simplify the notation we consider p as an embedding of a submodule A 

into B. We look at pairs (A,, a) with A S A; C B, aj: Aj-*D such that 

aJIA = a. Let 0 be the set of all such pairs. Clearly 0 is nonempty, since 

(A, a) is in d.. The relation (A;, a)5 (Ak, ak) if A; c Ak and aklaj = ai 

defines an ordering in P. With this ordering 0 is inductive. Indeed, every 

chain (A;, 05), j e J has an upper bound, namely (U A;, U a) where UAW 

is simply the union, and Ua is defined as follows: If a e UA;, then a e Ak 

for some k e J. We define U+a,(a) = ak(a). Plainly U aj is welldefined 

and is a homomorphism, and 

(A,,a,):! (UA,,Ua) 

By Zorn's Lemma there exists a maximal element (A, a) in 0. We shall 

show that A = B, thus proving the theorem. Suppose A + B; then there 

exists b e B with b 0 A. The set of A e A such that Ab e A is readily seen 

to be an ideal ofA. Since A is a principal ideal domain, this ideal is 

generated by one element, say A0. If A0 + 0. then we use the fact that D 

is divisible to find c e D such that a(A0 b) = A c. If 20 = 0, we choose an 

arbitrary c. The homomorphism a may now be extended to the module A 

generated by A and b, by setting &(a + A b) = a() + A c. We have to 

check that this definition is consistent. If 2b e A, we have &(A b) = Ac. 

But A = l; A0 for some E A and therefore A b = l; 20 b. Hence 
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b) 1 c=Ac. Since (A, a) < (A, &), 

this contradicts the maximality of (A, a), so that A = B as desired. 

Proposition . Every quotient of a divisible module is divisible. 

Proof. Let e : D--» E be an epimorphism and let D be divisible. For e e E 

and 0+ 2 E A there exists d c- D with s(d) = e and d' e D with Ad'=d. 

Setting e' = e(d') we have 2 e' = As(d') = e(2 d') = s(d) = e 

Corollary . Let A be a principal ideal domain. Every quotient of an 

injective A-module is injective. 

Proposition . Every abelian group may be embedded in a divisible 

(hence injective) abelian group. which says that every A-module is a 

quotient of a free, hence projective, Amodule.  

Proof. We shall define a monomorphism of the abelian group A into a 

direct product of copies of Q/Z. 

suffice. Let 0 + a e A and let (a) denote the subgroup of A generated by 

a. Define a : (a)-+Q2/7 as follows: If the order of a e A is infinite choose 

0 $ a(a) arbitrary. If the order of a e A is finite, say n, choose 0+a(a) to 

have order dividing n. Since Q2/71 is injective, there exists a map A--+ 

Q2/7 such that the diagram 

is commutative. By the universal property of the product, the Na define a 

unique homomorphism/3: A- H (Q 171)a. Clearly isamonomorphism 

since /3a(a) + 0 if a + 0. Q 

For abelian groups, the additive group of the integers 71 is projective and 

has the property that to any abelian group G + 0 there exists a nonzero 

homomorphism p : 7-+G. The group Q2/71 has the dual properties; it is 

injective and to any abelian group G + 0 there is a nonzero 

homomorphism y,: G-+Q2/7L. Since a direct sum of copies of 71 is 

called free, we shall term a direct product of copies of Q/71 cofree. Note 

that the two properties of 7L mentioned above do not characterize 71 

entirely. Therefore "cofree" is not the exact dual of "free", it is dual only 

in certain respects. In Section 8 the generalization of this concept to 

arbitrary rings is carried through. 
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Lemma  . Let M be a module. Then M is injective iff HomR(−, M) is 

exact. 

Proof. Let 0 → N0 → N → N00 → 0 be an exact sequence. In general it 

follows that 0 → HomR(N00, M) → HomR(N, M) → HomR(N0 , M) is 

exact. To make it right exact, we just need that HomR(N, M) → 

HomR(N0 , M) is surjective. This map is surjective for all exact 

sequences iff M is injective by definition. 

Lemma . Let A be a Z-module. Then there exists an injective module I 

and a monomorphism ϕ : M → I. 

Proof. Recall that Q/Z is injective. For a Z-module B define B∨ := 

HomZ(B, Q/Z). We now have a natural map as follows: 

ψ : A → A ∨ 

∨ a 7→ (ϕ 7→ ϕ(a)) 

One can easily see that this map is injective since Q/Z is injective. Now 

let j∈J Z → A∨ be a surjection, then we get an embedding A∨∨ = 

HomZ(A∨, Q/Z) → HomZ( L j∈J Z, Q/Z) ∼= (Q/Z) J . Hence we have 

an embedding A → (Q/Z) J . So, this last module is injective, and hence 

we are done. 

Lemma . Let R be an S algebra. Let A be an injective S-module and P a 

projective R-module. Then HomS(P, A) is an injective R-module. 

Proof. We need to show that HomR(−, HomS(P, A)) is exact. First notice 

that HomR(−, HomS(P, A)) ∼= HomS(−⊗RP, A) (universial property of 

tensor product). Now notice that the functor −⊗R P is exact since P is 

projective. As A is injective, it follows that HomS(−, A) is exact. 

Combine both to obtain the result. 

Theorem . Let M be an R-module. Then there is an injective module I 

and a monomorphism ϕ : M → I. 

Proof. First consider M as Z-module and by Lemma 1.7 there is a Z-

injective module I1 such that we have a monomorphism ϕ1 : M → I1. By 
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the previous lemma, since R is projective over R, HomZ(R, I1) is 

injective. Consider the following map: 

ϕ : M → HomZ(R, I1) 

m 7→ (r 7→ ϕ1(rm)) 

One can easily show that ϕ is R-linear and that ϕ is injective. Indeed, if 

ϕ(m) = 0, then ϕ1(m) = ϕ1(1cm˙ ) = 0 in I, hence m = 0. 

11.3 INJECTIVE HULLS 

Definition  Let M be a module. A module E ⊃ M is called an essential 

extension of M if every non-zero submodule of E intersect M non-

trivially. We denote this as E ⊃e M. Such an essential extension is called 

maximal if no module properly containing E is an essential extension of 

M. 

Remarks. i. If E2 ⊃e E1 and E1 ⊃e M, then E2 ⊃e M (follows directly). 

ii. Let E ⊃ M. Then E is an essential extension of M if for any 0 6= a ∈ E 

we have Ra ∩ M ≠ 0. 

Lemma . A module M is injective iff M has no proper essential 

extensions. 

 Proof. =⇒ : Suppose that M is injective and let E ⊃e M be an essential 

extension. Apply Lemma 1.3 ii, to see that 0 → M → E splits, that is, E = 

M ⊕ E0 for some submodule E0   E. But then E0 ∩ M = 0, and hence 

E0 = 0 and M = E. ⇐=: Now suppose that M has no proper essential 

extension. Embed M into an injective module I and let S be a maximal 

submodule such that S ∩M = 0 (Zorn). Then I/S is an essential extension 

of I, hence M = I/S, hence I = M ⊕ S. that M itself is injective. 

Lemma  . Any module M has a maximal essential extension.  

Proof. Embed M into an injective module I. We claim that there are 

maximal essential extensions of M in I. We order the set of essential 

extensions of M in I by inclusion. The union of a chain of essential 

extensions is again essential , and by Zorn‘s lemma there are maximal 

essential extensions of M in I. We claim that such an extension is a 
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maximal essential extension (in general). Let E be such a maximal 

essential extension inside I and suppose that E0 )e E ⊃e M. Since E → 

E0 is an inclusion and I is injective, we can extend the inclusion E → I to 

a map ϕ : E0 → I. Since Ker(ϕ) ∩ M = 0 (by construction), it follows that 

ϕ is injective (E0 ⊃e M is essential), but this contradicts the maximality 

of E inside. 

Theorem . For modules M   I, the following are equivalent: 

ii. I is a maximal essential extension of M.  

iii.  I is injective, and is essential over M. 

iv.  I is minimal injective over M.  

Proof. i =⇒ ii: It follows that I is maximal essential, I it injective.  

ii =⇒ iii: Suppose that M   I 0   I is injective. Then I = I 0 ⊕ J for 

some submodule J As M   I 0 , it follows that J ∩ M = 0, since I ⊃e M, 

it follows that J = 0 and hence I = I 0 . 

 iii =⇒ i: it follows that there is a maximal essential extension E of M 

contained in I. By i =⇒ ii we see that E is injective. Since I was a 

minimal injective module containing M, we have E = I. 

Definition . If M   I satisfy the equivalent properties of the above 

theorem, then I is called an injective hull of M. 

Lemma . Let I, I0 be injective hulls of M. Then there exists an 

isomorphism g : I 0 → I which is the identity on M. 

Proof. The map M → I 0 can be extended, by injectivity of I, to a map g : 

I → I 0 . The map is the identity on M and as before since (kerg) ∩ M = 

0, it follows by essentiality that g is injective. Since I 0 was minimal 

injective, it follows that g is surjectie as well. 

Check In Progress 

Note: i) Write your answers in the space given below.  

Q. 1 Any module M has a maximal essential extension. 
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Solution 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

Q. 2Let M be an R-module. Then there is an injective module I and a 

monomorphism ϕ : M → I. 

Solution 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

11.4 SOME THEOREMS AND LEMMA 

Notation . ‗The‘ injective hull of M is denoted by E(M). 

Lemma . i. If I is an injective module containing M, then I contains a 

copy of E(M). ii. If M  e N, then N can be enlarged to a copy of E(M) 

and E(M) = E(N).  

Proof. i. Embed M into an injective module I. We claim that there are 

maximal essential extensions of M in I. We order the set of essential 

extensions of M in I by inclusion. The union of a chain of essential 

extensions is again essential (use Remark 2.2), and by Zorn‘s lemma 

there are maximal essential extensions of M in I. We claim that such an 

extension is a maximal essential extension (in general). Let E be such a 

maximal essential extension inside I and suppose that E0 )e E ⊃e M. 

Since E → E0 is an inclusion and I is injective, we can extend the 

inclusion E → I to a map ϕ : E0 → I. Since Ker(ϕ) ∩ M = 0 (by 

construction), it follows that ϕ  

ii. It follows that E(N) ⊃e N ⊃e M. Hence E(N) ⊃e N and it is still a 

maximal essential extension. It follows that E(M) = E(N). 

Proposition . Let M and E be R-modules.  
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(1) If E is injective and M ⊆ E, then any maximal essential extension of 

M in E is an injective module, hence is a direct summand of E.  

(2) Any two maximal essential extensions of M are isomorphic.  

Proof. (1) Let E0 be a maximal essential extension of M in E and let E0 

⊆ Q be an essential extension. Since E is injective, the identity map E0 

−→ E lifts to a homomorphism ϕ : Q −→ E. Since Q is an essential 

extension of E0 , it follows that ϕ must be injective. This gives us M ⊆ 

E0 ⊆ Q ,→ E, and the maximality of E0 implies that Q = E0 . Hence E0 

has no proper essential extensions, and so it is an injective module  

(2) Let M ⊆ E and M ⊆ E0 be maximal essential extensions of M. Then 

E0 is injective, so M ⊆ E0 extends to a homomorphism ϕ : E −→ E0 . 

The inclusion M ⊆ E is an essential extension, so ϕ is injective. But then 

ϕ(E) is an injective module, and hence a direct summand of E0 . Since M 

⊆ ϕ(E) ⊆ E0 is an essential extension, we must have ϕ(E) = E0 . 

Definition . The injective hull or injective envelope of an R-module M is 

a maximal essential extension of M, and is denoted by ER(M). 

Proposition  (Bass). A ring R is Noetherian if and only if every direct 

sum of injective R-modules is injective.  

Proof. We first show that if M is a finitely generated R-module, then  

HomR(M, ⊕iNi) ∼= ⊕i HomR(M, Ni). 

 Independent of the finite generation of M, there is a natural injective 

homomorphism ϕ : ⊕i HomR(M, Ni) −→ HomR(M, ⊕iNi). If M is 

finitely generated, the image of a homomorphism from M to ⊕iNi is 

contained in the direct sum of finitely many Ni . Since Hom commutes 

with forming finite direct sums, ϕ is surjective as well.  

          Let R be a Noetherian ring, and Ei be injective R-modules. Then 

for an ideal a of R, the natural map HomR(R, Ei) −→ HomR(a, Ei) is 

surjective. Since a is finitely generated, the above isomorphism implies 

that HomR(R, ⊕Ei) −→ HomR(a, ⊕Ei) is surjective as well. Baer‘s 

criterion now implies that ⊕Ei is injective.  
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          If R is not Noetherian, it contains a strictly ascending chain of 

ideals a1  

( a2 ( a3 ( . . . . Let a = ∪iai . 

 The natural maps a ,→ R −→→ R/ai ,→ ER(R/ai) give us a 

homomorphism a −→ Q i ER(R/ai). The image lies in the submodule 

⊕iER(R/ai), (check!) so we have a homomorphism ϕ : a −→ 

⊕iER(R/ai). Lastly, check that ϕ does not extend to homomorphism R 

−→ ⊕iER(R/ai). 

Theorem . Let E be an injective module over a Noetherian ring R. Then  

E ∼= ⊕iER(R/pi), 

 where pi are prime ideals of R. Moreover, any such direct sum is an 

injective R-module.  

Proof. The last statement follows. Let E be an injective R-module. By 

Zorn‘s Lemma, there exists a maximal family {Ei} of injective 

submodules of E such that Ei ∼= ER(R/pi), and their sum in E is a direct 

sum. Let E0 = ⊕Ei , which is an injective module, and hence is a direct 

summand of E. There exists an R-module E00 such that E = E0 ⊕ E00. 

If E00 6= 0, pick a nonzero element x ∈ E00. Let p be an associated 

prime of Rx. Then R/p ,→ Rx ⊆ E00, so there is a copy of ER(R/p) 

contained in E00 and E00 = ER(R/p) ⊕ E000, contradicting the 

maximality of family {Ei}. 

Theorem . Let p be a prime ideal of a Noetherian ring R, and let E = 

ER(R/p) and κ = Rp/pRp, which is the fraction field of R/p. Then 

(1) if x ∈ R \ p, then E x−→ E is an isomorphism, and so E = Ep;  

(2) 0 :E p = κ;  

(3) κ ⊆ E is an essential extension of Rp-modules and E = ERp (κ); 

 (4) E is p-torsion and Ass(E) = {p}; 

 (5) HomRp (κ, E) = κ and HomRp (κ, ER(R/q)p) = 0 for primes q . 
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Proof. (1) κ is an essential extension of R/p by Example 1.8, so E 

contains a copy of κ and we may assume R/p ⊆ κ ⊆ E. Multiplication by 

x ∈ R\p is injective on κ, and hence also on its essential extension E. The 

submodule xE is injective, so it is a direct summand of E. But κ ⊆ xE ⊆ 

E are essential extensions, so xE = E. 

(2) 0 :E p = 0 :E pRp is a vector space over the field κ, and hence the 

inclusion κ ⊆ 0 :E p splits. But κ ⊆ 0 :E p ⊆ E is an essential extension, 

so 0 :E p = κ 

(3) The containment κ ⊆ E is an essential extension of R-modules, hence 

also of Rp-modules. Suppose E ⊆ M is an essential extension of Rp-

modules, pick m ∈ M. Then m has a nonzero multiple (r/s)m ∈ E, where 

s ∈ R \ p. But then rm is a nonzero multiple of m in E, so E ⊆ M is an 

essential extension of R-modules, and therefore M = E 

(4) Let q ∈ Ass(E). Then there exists x ∈ E such that Rx ⊆ E and 0 :R x 

= q. Since R/p ⊆ E is essential, x has a nonzero multiple y in R/p. But 

then the annihilator of y is p, so q = p and Ass(E) = {p} 

               If a is the annihilator of a nonzero element of E, then p is the 

only associated prime of R/a ,→ E, so E is p-torsion. 

(5) For the first assertion,  

HomRp (κ, E) = HomRp (Rp/pRp, E) ∼= 0 :pRp E = κ. 

Since elements of R\q act invertibly on ER(R/q), we see that ER(R/q)p = 

0 if q * p. In the case q ⊆ p, we have 

HomRp (κ, ER(R/q)p) ∼= 0 :pRp ER(R/q)p = 0 :pRp ER(R/q). 

If this is nonzero, then there is a nonzero element of ER(R/q) killed by p, 

which forces q = p since Ass ER(R/q) = {q}. 

Theorem . Let (R, m, K) be a local ring. Then ER(K) = ERb(K).  

Proof. The containment K ⊆ ER(K) is an essential extension of R-

modules, hence also of Rb-modules. If ER(K) ⊆ M is an essential 

extension of Rbmodules, then M is m-torsion. (Prove!) If m ∈ M is a 

nonzero element, then Rmb ∩ ER(K) 6= 0. But Rmb = Rm, so ER(K) ⊆ 
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M is an essential extension of R-modules, which implies M = ER(K). It 

follows that ER(K) is a maximal essential extension of K as an Rb-

module. 

11.5 EXERCISE SOLVED 

Exercise 1. Verify that f∗(M) is a left R-module using this definition of f 

· φ. 

Proof :      f∗(M) has the following additional structure. Let A be a R-

module, so A is also a Z-module by forgetting the R-module structure. 

For a Z-module K, define ψA : HomZ(A,K) → HomR(A,HomZ(R,K)) 

by ψA(h) ∈ HomR(A,HomZ(R,K)) is defined by ψA(h)(a)(x) = h(x·a), 

where a ∈ A and x ∈ R. Here f∗(K) = HomZ(R,K)) is regarded as a R-

module as in Exercise 

Exercise 2. Show that for h ∈ HomZ(A,K), ψA(h) ∈ 

HomR(A,HomZ(R,K)).  

Prof : For A and K as above, define τA : HomR(A,HomZ(R,K)) → 

HomZ(A,K) by τA(g)(a) = g(a)(1), for a ∈ A. It is very easy to check that 

τA(g) ∈ HomZ(A,K). 

Exercise 3. Show that ψA and τA are inverse isomorphisms.  

Proof : Let now B also be a R-module, with R-module homomorphism φ 

: A → B. Define φ ∗ Z : HomZ(B,K) → HomZ(A,K) by φ ∗ Z (f) = f ◦ φ. 

Define φ ∗ R : HomR(B,HomZ(R,K)) → HomR(A,HomZ(R,K)) by φ ∗ 

R(g) = g ◦ φ. 

Exercise 4. Show the diagram is commutative, i.e., φ ∗ R ◦ ψB = ψA ◦ φ 

∗ Z . 

We may now explain how to construct injective R-modules. 

Proposition 1. Let E be an injective Z-module. Then f∗(E) = HomZ(R,E) 

is an injective R-module.  

Proof: Let i : M → N be an embedding of R-modules. We must show i ∗ 

R : HomR(N,f∗(E)) → HomR(M,f∗(E)) is surjective. By Exercise 4 
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applied with i : M → N in place of φ : A → B and with E in place of K, 

we have i ∗ R ◦ ψN = ψM ◦ i ∗ Z . Since E is an injective Z-module, i ∗ Z 

: HomZ(N,E) → HomZ(M,E) is surjective by definition of injective 

module. By Exercise 3, it follows that ψM ◦i ∗ Z is surjective, so i ∗ R ◦ 

ψN is surjective. In particular, i ∗ R is surjective, which completes the 

proof. 

Theorem . Let M be a left R-module. Then there is an embedding M → 

G, where G is an injective R-module.  

Proof : Regard M as a Z-module.  there is an embedding of Z-modules h 

: M → E, where E is an injective Z-module. Define η : M → f∗(E) = 

HomZ(R,E) by the formula η(m)(r) = h(r · m). 

Exercise 5. η is a R-module homomorpism. 

Definition. A natural transformation of functors T : F → G assigns to 

each object X of C a morphism TX : F(X) → G(X) with the property that 

for any two objects X,Y of C and each morphism f : X → Y in 

MorC(X,Y ), then G(f) ◦ TY = TX ◦ F(f), i.e., the following diagram 

commutes: 

Exercise 6. : Prove that this T is a natural transformation between the 

contravariant functors F and G. 

Proof : Further, we remark that f∗ as defined before is a covariant functor 

from (Z−mod) to (R − mod). We may define a covariant functor from (R 

− mod) to (Z − mod) by forgetting the R-module structure. This is an 

example of a forgetful functor and may be denoted by f ∗ (M) = M, 

where on the left M is regarded as a R-module, and on the right M is 

regarded as a Z-module by forgetting the R-module structure. In this 

language, we may restate the conclusion of Exercise 3 as stating that for 

R-module B and Z-module K, HomR(B,f∗(K)) ∼= HomZ(f ∗B,K). Then 

f∗ and f ∗ are called adjoint functors, and f∗ is called right adjoint of f ∗ 

and f ∗ is called left adjoint of f∗. There are many examples of this in 

mathematics. 

Lemma . Every Abelian group can be embedded in a divisible Abelian 

group.  
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Proof. Let G be an Abelian group, and choose F = # g∈G Z and E = # 

g∈G Q, where Q is the additive group of rational numbers. Define the 

well-defined function θ : F → G by θ({ng}) = $ngg, where ng = 0 for all 

but a finite number of g ∈ G. We will first show that θ is a Z-

epimorphism. Note that for every {ng}, {mg} ∈ F and z ∈ Z 

θ({ng} + {mg}) = θ({ng + mg}) 

= ∑  g∈G (ng + mg) g 

= ∑ g∈G ngg + mgg 

= θ({ng}) + θ({mg}) 

And 

θ(z{ng}) = θ({zng}) 

=∑  g∈G zngg 

= zθ({ng}), 

o θ is an Z-homomorphism. Let g0 ∈ G, and choose {ng} ∈ F so that ng 

= 0 if g (= g0 and ng = 1 if g = g0. Thus, θ({ng}) = $ngg = 1g0 = g0, 

showing that θ is a Z-epimorphism. 

Note that F/Ker(θ) is a subgroup of E/Ker(θ). Now, since Q is divisible, 

so is E = # g∈G Q. Thus, E/Ker(θ) is a divisible Abelian group Because 

G ≈ F/Ker(θ) ι −→ E/Ker(θ), where ι is the inclusion mapping, G can be 

embedded in a divisible Abelian group 

Lemma . Let D be a divisible abelian group. Then HomZ(R, D) is an 

injective Rmodule. 

Proof. Recall that HomZ(R, D) is an R-module via (f + g)(x) = f(x) + 

g(x) and (rf)(x) = f(xr) for every r, x ∈ R and f,g ∈ HomZ(R, M). Let f : I 

→ HomZ(R, D) be an Rhomomorphism, where I is a left ideal of R. 

Define the well-defined function h : I → D by h(a)=[f(a)](1R). Also, note 

that for every a, b ∈ I and z ∈ Z, 

h(a + b)=[f(a + b)](1R) 

= [f(a)](1R)+[f(b)](1R) 
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= h(a) + h(b), 

so h is an Z-homomorphism, a.k.a. a group homomorphism. Since D is 

an injective Zmodule , there exists a Z-homomorphism ( : R → D, so ( 

|I= h. Now, let g : R → HomZ(R, D) be the well-defined function given 

by [g(r)](x) = ((xr) for every x ∈ R, where g(r) ∈ HomZ(R, D). Note that 

for every a, b ∈ R, g(a + b) = g(a) + g(b) since for every x ∈ R, 

[g(a + b)](x) = ((x[a + b]) 

=l((xa + xb) 

= ((xa) + ((xb) 

= [g(a)](x)+[g(b)](x) 

and g(ab) = ag(b) since for every x ∈ R, 

g(ab)](x) = ((x[ab]) 

= (([xa]b) 

= [g(b)](xa) 

= a[g(b)](x). 

Thus, g is an R-homomorphism. Lastly, observe that g(r) = f(r) for every 

r ∈ I since for every x ∈ R, 

[g(r)](x) = ((xr) = h(xr)=[f(xr)](1R) = x[f(r)](1R)=[f(r)](x). 

Hence, HomZ(R, D) is an injective R-module. 

Corollary . Let M be an injective Abelian group. Then HomZ(R, M) is 

an injective R-module. 

Theorem . Every R-module has an injective extension. 

 Proof. Let M be an R-module. Then, there is an injective R-module J 

such that a function f : M → J is an R-monomorphism. there is an R-

module extension B of M that is R-isomorphic to J. Thus, B is an 

injective extension of M. 
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11.6 SUMMARY 

We study in this unit embedding injective module and its properties and 

examples. We study injective Hulls and Embedding modules and its 

properties with some important examples and lemma.We study some 

examples of extension module. We study principal ideal domain of the 

module.  

1. Let (R, m) be a complete local ring and E = ER(R/m) be the 

injective hull of the residue field of R. The functor (−) ∨ = 

HomR(−, E) has the following properties, known as Matlis 

duality: 

 (a) If M is an R-module which is Noetherian or Artinian, then 

M∨∨∼= M.  

(b) If M is Noetherian, then M∨ is Artinian. 

(c) If M is Artinian, then M∨ is Noetherian. 

2. Let A be a principal ideal domain. A A-module is injective if and 

only if it is divisible. 

3. Let M be a module. Then M is injective iffHomR(−, M) is exact. 

4. Let M be a module. A module E ⊃ M is called an essential 

extension of M if every non-zero submodule of E intersect M 

non-trivially. We denote this as E ⊃e M. Such an essential 

extension is called maximal if no module properly containing E is 

an essential extension of M. 

5. Let E be an injective module over a Noetherian ring R. Then E 

∼= ⊕iER(R/pi), 

where pi are prime ideals of R. Moreover, any such direct sum is 

an injective R-module.  

6. Let M be a left R-module. Then there is an embedding M → G, 

where G is an injective R-module. 

11.7 KEYWORD 

Hulls : The main body of a ship or other vessel, including the bottom, 

sides, and deck but not the masts, superstructure, rigging, engines, and 

other fittings 
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Samonomorphism :A transformation of one set into another 

that preserves in the second set the relations between elements of the first 

Embedding : Fix (an object) firmly and deeply in a surrounding 

mass 

Couples : Two people or things of the same sort considered together 

11.8 QUESTIONS FOR REVIEW  

Q. 1 Prove the following proposition: The A module I is injective if and 

only if for every left ideal J C A and for every A-module homomorphism 

a : J--+I the diagram J--*A aI I may be completed by a homomorphism f 

: A--+I such that the resulting triangle is commutative. 

Q. 2 Let F--.A--.O be a short exact sequence of abelian groups, with F 

free. By embedding F in a direct sum of copies of Q. show how to embed 

A in a divisible group.  

Q. 3. Show that every abelian group admits a unique maximal divisible 

subgroup.  

Q. 4  Show that if A is a finite abelian group, then Hom7(A, Q/Z) = A. 

Deduce that if there is a short exact sequence of abelian groups with A 

finite, then there is a short exact sequence  

Q. 5  Show that a torsion-free divisible group D is a Q-vector space. 

Show that Hom7(A, D) is then also divisible. Is this true for any divisible 

group D?  

Q. 6  Show that Q is a direct summand in a direct product of copies of 

Q/1L. 

Q. 7 For example Q/Z is Z-injective. This follows easily from Baer‘s 

criterion (it shows that a group is injective iff the group is divisble). 

Q. 8 Let Mj   Ej for all j ∈ J be modules over R. Then L L j∈J Mj  e 

j∈J Ej iff for all j ∈ J : Mj  e Ej . 
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Q. 9 Let Mj for 1 ≤ j ≤ n be R-modules. Then E( Ln j=1 Mj ) = Ln j=1 

E(Mj ). 

Q. 10 Let R be a domain. Then we know that Q(R) is injective (Example 

1.6), and Q(R) is essential over R. Hence E(R) = Q(R). 

Q. 11 Let Cn denote the cyclic group of order n. Define Cp∞ = S i∈Z≥1 

Cpi . One can easily check that this group is divisble, hence injective 

over Z. It is easy to see that Cp∞ is essential over Cpi for i ∈ Z≥1. 

Therefore E(Cpi ) = Cp∞ for i ∈ Z≥1. 

Q. 12 Let k be a field, then k is injective over k (see Example 1.6). Let R 

be a finite algebra over k. Let Rˆ := Homk(R, k). We have seen in 

Lemma 1.8 that Rˆ is injective. Let S   Rˆ be the module generated by 

all simple submodules of Rˆ. Since any module contains a simple 

submodule, it follows that E(S) = Rˆ. One can show that S ∼= R/radR 

where radR is the Jacobson radical of R (the intersection of the maximal 

ideals 

Q. 13 Let R be an integral domain. An R-module M is divisible if rM = 

M for every nonzero element r ∈ R.  

(1) Prove that an injective R-module is divisible.  

(2) If R is a principal ideal domain, prove that an R-module is divisible if 

and only if it is injective.  

(3) Conclude that Q/Z is an injective Z-module.  

(4) Prove that any nonzero Abelian group has a nonzero homomorphism 

to Q/Z.  
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11.10 ANSWER TO CHECK YOUR 

PROGRESS 

Check in Progress-I 

Answer Q. 1 Check in Section 2 

              Q 2 Check in Section 1 

Check in Progress-II 

Answer Q. 1 Check in Section 3 

              Q 2 Check in Section 2 
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UNIT 12 - TENSOR PRODUCT OF 

MODULE 
 

STRUCTURE 

12.0 Objective 

12.1 Introduction 

12.1.1 Balanced Product 

12.1.2 The Universal Property 

12.1.3 Properties of the Tensor Product 

12.1.4 Additional Structure 

12.1.5 An Element as a  Bilinear Map 

12.1.6 Basic Idea 

12.2 Vector Space Tensor Product 

12.3 Summary 

12.4 Keyword 

12.5 Questions for Review  

12.6 Suggestion Reading And References 

12.7 Answer to check your progress 

12.0 OBJECTIVE 

* Learn tensor product of module and balanced product 

* learn an element as a bilinear map  

* Learn vector space tensor product 
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* learn universal property 

12.1 INTRODUCTION: 

In mathematics, the tensor product of modules is a construction that 

allows arguments about bilinear maps (e.g. multiplication) to be carried 

out in terms of linear maps. The module construction is analogous to the 

construction of the tensor product of vector spaces, but can be carried out 

for a pair of modules over a commutative ring resulting in a third 

module, and also for a pair of a right-module and a left-module over 

any ring, with result an abelian group. Tensor products are important in 

areas of abstract algebra, homological algebra, algebraic 

topology, algebraic geometry, operator algebras and noncommutative 

geometry. The universal property of the tensor product of vector spaces 

extends to more general situations in abstract algebra. It allows the study 

of bilinear or multilinear operations via linear operations. The tensor 

product of an algebra and a module can be used for extension of scalars. 

For a commutative ring, the tensor product of modules can be iterated to 

form the tensor algebra of a module, allowing one to define 

multiplication in the module in a universal way. 

One of the things which distinguishes the modern approach to 

Commutative Algebra is the greater emphasis on modules, rather than 

just on ideals. An ideal a and its quotient ring A/a are both examples of 

modules. The collection of all modules over a given ring contains the 

collection of all ideals of that ring as a subset. The concept of modules is 

in fact a generalization of the concept of ideals. In this chapter, we give 

the definition and elementary properties of modules. Throughout this 

report,let A denote a commutative ring with unity 1. 

12.1.1 Balanced Product 

For a ring R, a right R-module M, a left R-module N, and an abelian 

group G, a map φ: M × N → G is said to be R-balanced, R-middle-

linear or an R-balanced product if for all m, m′ in M, n, n′ in N, 

and r in R the following hold: 
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The set of all such balanced products over R from M × N to G is denoted 

by LR(M, N; G). 

If φ, ψ are balanced products, then each of the operations φ + ψ and 

−φ defined pointwise is a balanced product. This turns the 

set LR(M, N; G) into an abelian group. 

For M and N fixed, the map G ↦ LR(M, N; G) is a functor from 

the category of abelian groups to the category of sets. The morphism 

part is given by mapping a group homomorphism g : G → G′ to the 

function φ ↦ g ∘ φ, which goes from LR(M, N; G) to LR(M, N; G′). 

Remarks 

1. Property (Dl) states the left and property (Dr) the 

right distributivity of φ over addition. 

2. Property (A) resembles some associative property of φ. 

3. Every ring R is an R-R-bimodule. So the ring 

multiplication (r, r′) ↦ r ⋅ r′ in R is an R-balanced 

product R × R → R. 

The tensor product of two R-modules is built out of the examples given 

above. Let M and N be two R-modules. Here is the formula for M ⊗ N: 

M ⊗ N = Y/Y (S), Y = L(M × N),…………….. (1)  

and S is the set of all formal sums of the following type:  

1. (rv, w) − r(v, w).  

2. (w, rv) − r(v, w).  

3. (v1 + v2, w) − (v1, w) − (v2, w).  

4. (v, w1 + w2) − (v, w1) − (v, w2). 

Our convention is that (v, w) stands for 1(v, w), which really is an 

element of L(M × N). Being the quotient of an R-module by a 

submodule, M ⊗ N is another R-module. It is called the tensor product 

of M and N. There is a map B : M × N → M ⊗ N given by the formula 

B(m, n) = [(m, n)] = (m, n) + Y (S),………………………………….. (2) 

namely, the Y (S)-coset of (m, n). The traditional notation is to write 
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m ⊗ n = B(m, n)        ………………………….. (3) 

The operation m ⊗ n is called the tensor product of elements. 

Given the nature of the set S in the definition of the tensor product, we 

have the following rules: 

1. (rv) ⊗ w = r(v ⊗ w).  

2. r ⊗ (rw) = r(v ⊗ w). 

 3. (v1 + v2) ⊗ w = v1 ⊗ w + v2 ⊗ w.  

4. v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2.  

These equations make sense because M ⊗ N is another R-module. They 

can be summarised by saying that the map B is bilinear . We will 

elaborate below. 

An Example: Sometimes it is possible to figure out M ⊗ N just from 

using the rules above. Here is a classic example. Let R = Z, the integers. 

Any finite abelian group is a module over Z. The scaling rule is just mg = 

g + ... + g (m times). In particular, this is true for Z/n. Let‘s show that Z/2 

⊗ Z/3 is the trivial module. 

Consider the element 1 ⊗ 1. We have 

2(1 ⊗ 1) = 2 ⊗ 1 = 0 ⊗ 1 = 0(1 ⊗ 1) = 0. 

At the same time 

2(1 ⊗ 1) = 1 ⊗ 3 = 1 ⊗ 0 = 0(1 ⊗ 1) = 0. 

But then 

1(1 ⊗ 1) = (3 − 2)(1 ⊗ 1) = 0 − 0 = 0. 

Hence 1 ⊗ 1 is trivial. From here it is easy to see that a ⊗ b is trivial for 

all a ∈ Z/2 and b ∈ Z/3. There really aren‘t many choices. But Z/2 ⊗ Z/3 

is the span of the image of M × N under the tensor map. Hence Z/2 ⊗ 

Z/3 is trivial. 
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12.1.2 The Universal Property 
Linear and Bilinear Maps: Let M and N be R-modules. A map φ : M 

→ N is R-linear (or just linear for short) provided that  

1. φ(rv) = rφ(v).  

2. φ(v1 + v2) = φ(v1) + φ(v2).  

A map φ : M × N → P is R-bilinear if  

1. For any m ∈ M, the map n → φ(m, n) is a linear map from N to P.  

2. For any n ∈ N, the map m → φ(m, n) is a linear map from M to P 

Existence of the Universal Property: The tensor product has what is 

called a universal property. The name comes from the fact that the 

construction to follow works for all maps of the given type. 

Lemma  Suppose that φ : M × N → P is a bilinear map. Then there is a 

linear map bφ : M ⊗ N → P such that φ(m, n) = bφ(m ⊗ n). 

Equivalently, φ = bφ ◦ B, where B : M × N → M ⊗ N is as above 

Proof: First of all, there is a linear map ψ : Y (M × N) → P. The map is 

given by 

ψ(r1(v1, w1) + ... + rn(vn, wn)) = r1ψ(v1, w1) + ... + rnψ(vn, wn).                                       

(4) 

That is, we do the obvious map, and then simplify the sum in P. Since φ 

is bilinear, we see that ψ(s) = 0 for all s ∈ S. Therefore, ψ = 0 on Y (S). 

But then ψ gives rise to a map from M ⊗ N = Y/Y (S) into P, just using 

the formula 

                                                  φ(a + Y (S)) = ψ(a).                              (5) 

Since ψ vanishes on Y (S), this definition is the same no matter what 

coset representative is chosen. By construction bφ is linear and satisfies 

bφ(m⊗n) = φ(m, n). ♠ 

Uniqueness of the Universal Property: Not only does (B, M ⊗N) have 

the universal property, but any other pair (B′ ,(M ⊗ N) ′ ) with the same 
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property is essentially identical to (B, M ⊗ N). The next result says this 

precisely. 

Lemma  Suppose that (B′ ,(M ⊗ N) ′ ) is a pair satisfying the following 

axioms:  

• (M ⊗ N) ′ is an R-module.  

• B′ : M × N → (M ⊗ N) ′ is a bilinear map.  

• (M ⊗ N) ′ is spanned by the image B′ (M × N).  

• For any bilinear map T : M × N → P there is a linear map L : (M ⊗ N) 

′ → P such that T = L ◦ B′ . 

 Then there is an isomorphism I : M ⊗ N → (M ⊗ N) ′ and B′ = I ◦ B. 

Proof: Since (B, M ⊗ N) has the universal property, and we know that 

B′ : M × N → (M ⊗ N) ′ is a bilinear map, there is a linear map I : M ⊗ 

N → (M ⊗ N) ′ such that 

B ′ = I ◦ B. 

We just have to show that I is an isomorphism. Reversing the roles of the 

two pairs, we also have a linear map J : (M ⊗ N) ′ → M ⊗ N such that  

B = J ◦ B ′ . 

Combining these equations, we see that 

B = J ◦ I ◦ B. 

But then J ◦ I is the identity on the set B(M × N). But this set spans M ⊗ 

N. Hence J ◦ I is the identity on M ⊗ N. The same argument shows that I 

◦ J is the identity on (M ⊗ N) ′ . But this situation is only possible if both 

I and J are isomorphisms. 

Check in Progress-I 

Note: i) Write your answers in the space given below.  

Q. 1 Define Universal Property. 

Solution ……………………………………………………………… 
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……………………………………………………………………….. 

…………………………………………………………………………. 

Q. 2 Define Balance Product. 

Solution ……………………………………………………………… 

……………………………………………………………………….. 

…………………………………………………………………………. 

12.1.3 Properties Of The Tensor Product 
Going back to the general case, here I‘ll work out some properties of the 

tensor product. As usual, all modules are unital R-modules over the ring 

R. 

Lemma  M ⊗ N is isomorphic to N ⊗ M. 

Proof: This is obvious from the construction. The map (v, w) → (w, v) 

extends to give an isomorphism from YM,N = L(M × N) to YN,M = L(N 

× N), and this isomorphism maps the set SM,N   YM,N of bilinear 

relations set SN,M   YN,M and therefore gives an isomorphism 

between the ideals YM,N SM,N and YN,M SN,M. So, the obvious map 

induces an isomorphism on the quotients. 

Lemma  R ⊗ M is isomorphic to M. 

Proof: The module axioms give us a surjective bilinear map T : R×M → 

M given by T(r, m) = rm. By the universal property, there is a linear map 

L : R ⊗ M → M such that T = L ◦ B. Since T is surjective, L is also 

surjective. At the same time, we have a map L ∗ : M → R ⊗ M given by 

the formula 

     L ∗ (v) = B(1, v) = 1 ⊗ v.                                          (9) 

The map L ∗ is linear because B is bilinear. We compute 

   L ∗ ◦ L(r ⊗ v) = L ∗ (rv) = 1 ⊗ rv = r ⊗ v.                                      (10) 
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So L ∗ ◦ L is the identity on the image B(R × M). But this image spans 

R⊗M. Hence L ∗ ◦L is the identity. But this is only possible if L is 

injective. Hence L is an isomorphism. 

Lemma  M ⊗ (N1 × N2) is isomorphic to (M ⊗ N1) × (N ⊗ N2).  

Proof: Let N = N1×N2. There is an obvious isomorphism φ from Y = 

YM,N to Y1 × Y2, where Yj = YM,Nj , and φ(S) = S1 × S2. Here Sj = 

SM,Nj . Therefore, φ induces an isomorphism from Y/Y S to (Y1/Y1S1) 

× (Y2/Y2S2). 

Lemma  M ⊗ Rn is isomorphic to Mn. 

Proof: By repeated applications of the previous result, M ⊗ Rn is 

isomorphic to (M ⊗ R) n , which is in turn isomorphic to Mn . ♠ 

Lemma  Suppose that Y is a module and Y ′   Y and I   Y are both 

submodules. Let I ′ = I ∩ Y ′ . Then there is an injective linear map from 

Y ′/I′ into Y/I. 

Proof: We have a linear map φ : Y ′ → Y/I induced by the inclusion 

from Y ′ into Y . Suppose that φ(a) = 0. Then a ∈ I. But, at the same time 

a ∈ Y ′ . Hence a ∈ I ′ . Conversely, if a ∈ I ′ then φ(a) = 0. In short, the 

kernel of φ is I ′ . But then the usual isomorphism theorem shows that φ 

induces an injective linear map from Y ′/I′ into Y/I. ♠ 

Lemma  Suppose that M′   M and N′   N are submodules. Then there 

is an injective linear map from M′ ⊗ N′ into M ⊗ N. This map is the 

identity on elements of the form a ⊗ b, where a ∈ M′ and b ∈ N′ . 

Proof: We apply the previous result to the module Y = YM,N and the 

submodules I = SM,N and M′ = YM′ ,N′. ♠ 

   In view of the previous result, we can think of M′ ⊗ N′ as a submodule 

of M ⊗ N when M′   N and N′   N are submodules. 

 This last result says something about vector spaces. Let‘s take an 

example where the field is Q and the vector spaces are R and R/Q. These 

two vector spaces are infinite dimensional. It follows from Zorn‘s lemma 

that they both have bases. However, You might want to see that R⊗R/Q 
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is nontrivial even without using a basis for both. If we take any finite 

dimensional subspaces V   R and W   R/Q, then we know V ⊗ W is a 

submodule of R ⊗ R/Q. Hence R ⊗ R/Q is nontrivial. In particular, we 

can use this to show that the element 1 ⊗ [α] is nontrivial when α is 

irrational. 

12.1.4 Additional Structure 

If S and T are commutative R-algebras, then S ⊗R T will be a 

commutative R-algebra as well, with the multiplication map defined 

by (m1 ⊗ m2) (n1 ⊗ n2) = (m1n1 ⊗ m2n2) and extended by linearity. In 

this setting, the tensor product become a fibered coproduct in the 

category of R-algebras. 

If M and N are both R-modules over a commutative ring, then their 

tensor product is again an R-module. If R is a ring, RM is a left R-module, 

and the commutator 

rs − sr 

of any two elements r and s of R is in the annihilator of M, then we can 

make M into a right R module by setting 

mr = rm. 

The action of R on M factors through an action of a quotient 

commutative ring. In this case the tensor product of M with itself 

over R is again an R-module. This is a very common technique in 

commutative algebra. 

12.1.5 An Element As A (Bi)Linear Map 

In the general case, each element of the tensor product of modules gives 

rise to a left R-linear map, to a right R-linear map, and to an R-bilinear 

form. Unlike the commutative case, in the general case the tensor product 

is not an R-module, and thus does not support scalar multiplication. 

 Given right R-module E and right R-module F, there is a canonical 

homomorphism θ : F ⊗R E∗ → HomR(E, F) such that θ(f ⊗ e′) is the 

map e ↦ f ⋅⟨e′, e⟩. 
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 Given left R-module E and right R-module F, there is a canonical 

homomorphism θ : F ⊗R E → HomR(E∗, F) such that θ(f ⊗ e) is the 

map e′ ↦ f ⋅⟨e, e′⟩. 

Both cases hold for general modules, and become isomorphisms if the 

modules E and F are restricted to being finitely generated projective 

modules (in particular free modules of finite ranks). Thus, an element of 

a tensor product of modules over a ring R maps canonically onto an R-

linear map, though as with vector spaces, constraints apply to the 

modules for this to be equivalent to the full space of such linear maps. 

 Given right R-module E and left R-module F, there is a canonical 

homomorphism θ : F∗ ⊗R E∗ → LR(F × E, R) such that θ(f′ ⊗ e′) is 

the map (f, e) ↦⟨f, f′⟩⋅⟨e′, e⟩. Thus, an element of a tensor 

product ξ ∈ F∗ ⊗R E∗ may be thought of giving rise to or acting as 

an R-bilinear map F × E → R. 

 

12.1.6 Basic Idea 
Today we talk tensor products. Specifically this post covers the 

construction of the tensor product between two modules over a ring. But 

before jumping in, I think now's a good time to ask, "What are tensor 

products good for?" Here's a simple example where such a question 

might arise: 

Suppose you have a vector space V over a field F. For concreteness, let's 

consider the case when V is the set of all 2×2 matrices with entries 

in R and let F=R. In this case we know what "F-scalar multiplication" 

means: if M∈V is a matrix and c∈R, then the new matrix cM makes 

perfect sense. But what if we want to multiply M by complex scalars too? 

How can we make sense of something like (3+4i)M? That's precisely 

what the tensor product is for! We need to create a set of elements of the 

form(complex number) "times" (matrix)(complex number) "times" 

(matrix)so that the mathematics still makes sense. With a little 

massaging, this set will turn out to be C⊗RV.   

So in general, if F is  an arbitrary field and V an F-vector space, the 

tensor product answers the question "How can I define scalar 
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multiplication by some larger field which contains F?" And of course 

this holds if we replace the word "field" by "ring" and consider the same 

scenario with modules. 

 

       Let R be a ring with 1 and let M be a right R-module and NN a 

left R-module and suppose A is any abelian group. Our goal is to create 

an abelian group M⊗RN, called the tensor product of M and N, such 

that if there is an R-balanced map i:M×N→M⊗RN and any R-balanced 

map φ:M×N→A, then there is a unique abelian group 

homomorphism Φ:M⊗RN→ such that φ=Φ∘, i.e. so the diagram below 

commutes. 

Definition: Let X be a set. A group F is said to be a free group on X if 

there is a function i:X→F such that for any group G and any set 

map φ:X→G there exists a unique group homomorphism Φ:F→G such 

that the following diagram commutes: (i.e. φ=Φ∘i) set map, so in 

particular we just want our's to be R-balanced: 

 Let R be a ring with 1. Let M be a right R-module, N a left R-module, 

and A an abelian group. A map φ:M×N→R is called R-balanced if for 

all m,m1,m2∈M, all n,n1,n2∈Nand all r∈R, 

φ(m1+m2,n)=φ(m1,n)+φ(m2,n) 

=φ(m,n1+n2)=φ(m,n1)+φ(m,n2))φ(mr,n)=φ(m,rn) 

 By "replacing" F by a certain quotient group F/H (We'll 

define H precisely below.) 

 

These observations give us a road map to construct the tensor product. 

And so we begin: 

Step 1 

Let F be a free abelian group generated by M×N and let A be an abelian 

group. Then by definition (of free groups), if φ:M×N→ is any set map, 

and M×N↪F by inclusion, then there is a unique abelian group 

homomorphism Φ:F→ A 

 



Notes 

121 

Step 2 

that the inclusion map M×N↪F is not R-balanced! To fix this, we must 

"modify" the target space F by replacing it with the 

quotient F/H where H≤F is the subgroup of F generated by elements of 

the form 

 (m1+m2,n)−(m1,n)−(m2,n) 

 (m,n1+n2)−(m,n1)−(m,n2) 

 (mr,n)−(m,rn) 

 

where m1,m2,m∈M, n1,n2,n∈N and r∈R. Why elements of this form? 

Because if we define the map i:M×N→F/H byi(m,n)=(m,n)+H,we'll see 

that ii is indeed R-balanced! 

So, are we done now? Can we really just replace F with F/H and replace 

the inclusion map with the map ii, and still retain the existence of a 

unique homomorphism Φ:F/H→A ? No! Of course not. F/H is not a free 

group generated by M×N. 

Step 3 

 

H⊆ker(f), that is as long as f(h)=0 for all h∈H. And notice that this 

condition, f(H)=0, forces f to be R-balanced! 

 

Sooooo... homomorphisms f:F→A such that H⊆ker(f) are the same as R-

balanced maps from M×N to A! (Technically, I should 

say homomorphisms f restricted to M×N In other words, we have 

In conclusion, to say "abelian group homomorphisms from F/H to A are 

the same as (isomorphic to) R-balanced maps from M×N to A" is the 

simply the hand-wavy way of saying  
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Whenever i:M×N→F is an R-balanced map and φ:M×N→A is an R-

balanced map where A is an abelian group, there exists a unique abelian 

group homomorphism Φ:F/H→A. such that the following diagram 

commutes: 

 

And this is just want we want! The last step is merely the final touch: 

Step 4 

the abelian quotient group F/H to be the tensor product of M and N,  

       

 

whose elements are cosets, 

 

where m⊗n for m∈M and n∈N is referred to as a simple tensor. And 

there you have it! The tensor product, constructed.   

The tensor product between modules  and  is a more general notion 

than the vector space tensor product. In this case, we replace "scalars" by 

a ring . The familiar formulas hold, but now  is any element of , 

 

(1) 

 

(2) 

 

(3) 
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This generalizes the definition of a tensor product for vector spaces since 

a vector space is a module over the scalar field. Also, vector bundles can 

be considered as projective modules over the ring of functions, and group 

representations of a group  can be thought of as modules over CG. The 

generalization covers those kinds of tensor products as well. 

There are some interesting possibilities for the tensor product of modules 

that don't occur in the case of vector spaces. It is possible for  to 

be identically zero. For example, the tensor product of  and  as 

modules over the integers, , has no nonzero elements. It is 

enough to see that . Notice that . Then 

 

(4

) 

since  in  and  in . In 

general, it is easier to show that elements are zero than to show they are 

not zero. 

Another interesting property of tensor products is that if  is 

a surjection, then so is the induced map  for any 

other module . But if  is injective, 

then  may not be injective. 

For example, , with  is injective, 

but , with , is not injective. 

In , we have . 

There is an algebraic description of this failure of injectivity, called 

the tor module. 

Another way to think of the tensor product is in terms of its universal 

property: Any bilinear map from  factors through the 

natural bilinear map  
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The vector space tensor product  of two group representations of 

a group  is also a representation of . An element  of  acts on a 

basis element  by 

 

If  is a finite group and  is a faithful representation, then any 

representation is contained in  for some . If  is a 

representation of  and  is a representation of , 

then  is a representation of , called the external tensor 

product. The regular tensor product is a special case, with the diagonal 

embedding of  in . 

12.2 VECTOR SPACE TENSOR PRODUCT 

The tensor product of two vector spaces  and , 

denoted  and also called the tensor direct product, is a way of 

creating a new vector space analogous to multiplication of integers. For 

instance, 

 

(1) 

In particular, 

 

(2) 

Also, the tensor product obeys a distributive law with the direct 

sum operation: 

 

(3) 

The analogy with an algebra is the motivation behind K-theory. The 

tensor product of two tensors  and  can be implemented in 

the Wolfram Language as: 
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  TensorProduct[a_List, b_List] := Outer[List, a, b] 

Algebraically, the vector space v is spanned by elements of the form , 

and the following rules are satisfied, for any scalar . The definition is 

the same no matter which scalar field is used. 

 

(4) 

 

(5) 

 

(6) 

One basic consequence of these formulas is that 

 

(7) 

A vector basis  of  and  of  gives a basis for , 

namely , for all pairs . An arbitrary element 

of  can be written uniquely as , 

where  are scalars. If  is  dimensional 

and  is  dimensional, then  has dimension . 

Using tensor products, one can define symmetric tensors, antisymmetric 

tensors, as well as the exterior algebra. Moreover, the tensor product is 

generalized to the vector bundle tensor product. In particular, tensor 

products of the tangent bundle and its dual bundle are studied 

in Riemannian geometry and physics. Sections of these bundles are often 

called tensors. In addition, it is possible to take the representation tensor 

product to get another representation. 

All of these versions of tensor product can be understood as module 

tensor products. The trick is to find the right way to think of these spaces 

as modules. 

Theorem . In M *R N, m *0 = 0 and 0 * n = 0.  
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Proof. This is just like the proof that a · 0 = 0 in a ring: since m*n is 

additive in n with m fixed, m * 0 = m * (0 + 0) = m * 0 + m *0. 

Subtracting m * 0 from both sides, m * 0 = 0. That 0 * n = 0 follows by a 

similar argument. 

Example . If A is a finite abelian group, Q *Z A = 0 since every 

elementary tensor is 0: for a * A, let na = 0 for some positive integer n. 

Then in Q * Z A, r * a = n(r/n) *  a = r/n* na = r/n*0 = 0. Every tensor is 

a sum of elementary tensors, and every elementary tensor is 0, so all 

tensors are 0. (For instance, (1/3) * (5 mod 7) = 0 in Q * Z Z/7Z. Thus 

we can have m * n = 0 without m or n being 0.) To show Q*Z A = 0, we 

don‘t need A to be finite, but rather that each element of A has finite 

order. The group Q/Z has that property, so Q* Z (Q/Z) = 0. By a similar 

argument, Q/Z *Z Q/Z = 0. 

 Since M * R N is spanned additively by elementary tensors, each linear 

(or just additive) function out of M * R N is determined on all tensors 

from its values on elementary tensors. This is why linear maps on tensor 

products are in practice described only by their values on elementary 

tensors. It is similar to describing a linear map between finite free 

modules using a matrix. The matrix directly tells you only the values of 

the map on a particular basis, but this information is enough to determine 

the linear map everywhere. 

However, there is a key difference between basis vectors and elementary 

tensors: elementary tensors have lots of linear relations. A linear map out 

of R2 is determined by its values on (1, 0), (2, 3), (8, 4), and (−1, 5), but 

those values are not independent: they have to satisfy every linear 

relation the four vectors satisfy because a linear map preserves linear 

relations. Similarly, a random function on elementary tensors generally 

does not extend to a linear map on the tensor product: elementary tensors 

span the tensor product of two modules, but they are not linearly 

independent. 

 Functions of elementary tensors can‘t be created out of a random 

function of two variables. For instance, the ―function‖ f(m * n) = m + n 

makes no sense since m ⊗ n = (−m) ⊗ (−n) but m + n is usually not −m 
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− n. The only way to create linear maps out of M ⊗R N is with the 

universal mapping property of the tensor product (which creates linear 

maps out of bilinear maps), because all linear relations among 

elementary tensors – from the obvious to the obscure – are built into the 

universal mapping property of M * R N.. Understanding how the 

universal mapping property of the tensor product can be used to compute 

examples and to prove properties of the tensor product is the best way to 

get used to the tensor product; if you can‘t write down functions out of M 

*R N, you don‘t understand M *R N. 

The tensor product can be extended to allow more than two factors. 

Given k modules M1, . . . , Mk, there is a module M1 * R · · · * R Mk 

that is universal for k-multilinear maps: it admits a k-multilinear map M1 

× · · · × Mk ⊗−−→ M1 ⊗R · · · ⊗R Mk and every k-multilinear map 

out of M1 × · · · × Mk factors through this by composition with a unique 

linear map out of M1 * R · · · * R Mk: 

Check In Progress – II 

Note: i) Write your answers in the space given below.  

Questions  

(1) What is m * n?  

(2) What does it mean to say m * n = 0?  

(3) What does it mean to say M *R, N = 0?  

(4) What does it mean to say m1 * n1 + · · · + mk * nk = m0 1 * n 0 1 + · 

· · + m0 ` * n 0 ` ?  

(5) Where do tensor products arise outside of mathematics? 

 (6) Is there a way to picture the tensor product? 

Answers: 

(1) Strictly speaking, m*n is the image of (m, n) ∈ M ×N 

under the canonical bilinear map M × N ⊗−−→ M 

⊗R N in the definition of the tensor product. Here‘s 
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another answer, which is not a definition but more 

closely aligns with how m * n occurs in practice: m ⊗ 

n is that element of M * R N at which the linear map 

M ⊗R N → P corresponding to a bilinear map M × N 

B −−→ P takes the value B(m, n).  

(2) We have m * n = 0 if and only if every bilinear map 

out of M × N vanishes at (m, n). Indeed, if m * n = 0 

then for each bilinear map B : M × N → P for some 

linear map L, so B(m, n) = L(m * n) = L(0) = 0. 

Conversely, if every bilinear map out of M × N sends 

(m, n) to 0 then the canonical bilinear map M × N → 

M ⊗R N, which is a particular example, sends (m, n) 

to 0. Since this bilinear map actually sends (m, n) to m 

* n, we obtain m * n = 0. 

A very important consequence is a tip about how to 

show a particular elementary tensor m * n is not 0: 

find a bilinear map B out of M × N such that B(m, n) 

6= 0. 

(3) The tensor product M *R N is 0 if and only if every 

bilinear map out of M × N (to all modules) is 

identically 0. First suppose M *R N = 0. Then all 

elementary tensors m* n are 0, so B(m, n) = 0 for all 

bilinear maps out of M ×N by the answer to the 

second question. Thus B is identically 0. Next suppose 

every bilinear map out of M ×N is identically 0. Then 

the canonical bilinear map M ×N ⊗−−→ M ⊗RN, 

which is a particular example, is identically 0. Since 

this function sends (m, n) to m * n, we have m * n = 0 

for all m and n. Since M *R N is additively spanned 

by all m * n, the vanishing of all elementary tensors 

implies M *R N = 0.  

So, that Q *Z A = 0 if each element of A has finite 

order is another way of saying every Z-bilinear map 

out of Q×A is identically zero, which can be verified 

directly: if B is such a map (into an abelian group) and 
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na = 0 with n ≥ 1, then B(r, a) = B(n(r/n), a) = B(r/n, 

na) = B(r/n, 0) = 0.  

         Turning this idea around, to show some tensor 

product module M *R N is not 0, find a bilinear map 

on M × N that is not identically 0. 

(4) We have Pk i=1 mi * ni = P` j=1 m0 j * n 0 j if and 

only if for all bilinear maps B out of M × N, Pk i=1 

B(mi , ni) = P` j=1 B(m0 j , n0 j ). The justification is 

along the lines of the previous two answers and is left 

to the reader. For example, the condition Pk i=1 mi * 

ni = 0 means Pk i=1 B(mi , ni) = 0 for all bilinear 

maps B on M × N 

(5) Tensors are used in physics and engineering (stress, 

elasticity, electromagnetism, metrics, diffusion MRI), 

where they transform in a multilinear way under a 

change in coordinates. 

(6) There isn‘t a simple picture of a tensor (even an 

elementary tensor) analogous to how a vector is an 

arrow. Some physical manifestations of tensors are in 

the previous answer, but they won‘t help you 

understand tensor products of modules. 

Theorem . For positive integers a and b with d = (a, b), Z/aZ *Z Z/bZ *= 

Z/dZ as abelian groups. In particular, Z/aZ *Z Z/bZ = 0 if and only if (a, 

b) = 1. 

Proof. Since 1 spans Z/aZ and Z/bZ, 1 * 1 spans Z/aZ *Z Z/bZ then 

a(1 * 1) = a * 1 = 0 * 1 = 0 and b(1 * 1) = 1 * b = 1 * 0 = 0, 

the additive order of 1 * 1 divides a and b, and therefore also d, so 

#(Z/aZ * Z Z/bZ) ≤ d. 

To show Z/aZ * Z Z/bZ has size at least d, we create a Z-linear map from 

Z/aZ * Z Z/bZ onto Z/dZ. Since d|a and d|b, we can reduce Z/aZ → Z/dZ 

and Z/bZ → Z/dZ in the natural way. Consider the map Z/aZ × Z/bZ B 

−−→ Z/dZ that is reduction mod d in each factor followed by 

multiplication: B(x mod a, y mod b) = xy mod d. This is Z-bilinear, so 
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the universal mapping property of the tensor product says there is a 

(unique) Z-linear map f : Z/aZ ⊗Z Z/bZ → Z/dZ commute, so f(x⊗y) = 

xy. In particular, f(x⊗1) = x, so f is onto. Therefore Z/aZ has size at 

least d, so the size is d and we‘re done. 

Example . The abelian group Z/3Z Z Z/5Z is 0. This type of collapsing 

in a tensor product often bothers people when they first see it, but it‘s 

saying something pretty concrete: each Z-bilinear map B : Z/3Z × Z/5Z 

→ A to an abelian group A is identically 0, which is easy to show 

directly: 3B(a, b) = B(3a, b) = B(0, b) = 0 and 5B(a, b) = B(a, 5b) = B(a, 

0) = 0, so B(a, b) is killed by 3Z + 5Z = Z, hence B(a, b) is killed by 1, 

which is another way of saying B(a, b) = 0. 

In Z/aZ * Z Z/bZ all tensors are elementary tensors: x * y = xy(1 * 1) and 

a sum of multiples of 1 * 1 is again a multiple, so Z/aZ * Z Z/bZ = Z(1 * 

1) = {x * 1 : x * Z}. How the map f : Z/aZ ⊗Z Z/bZ → Z/dZ was 

created from the bilinear map B : Z/aZ × Z/bZ → Z/dZ and the universal 

mapping property of tensor products. Quite generally, to define a linear 

map out of M * R N that sends all elementary tensors m*  n to particular 

places, always back up and start by defining a bilinear map out of M × N 

sending (m, n) to the place you want m *  n to go. Make sure you show 

the map is bilinear! Then the universal mapping property of the tensor 

product gives you a linear map out of M * R N sending m *  n to the 

place where (m, n) goes, which gives you what you wanted: a (unique) 

linear map on the tensor product with specified values on the elementary 

tensors. 

Remark . For ideals I and J, a few operations produce new ideals: I + J, I 

∩ J, and IJ. The intersection I ∩ J is the kernel of the linear map R → R/I 

⊕ R/J where r 7→ (r, r). So, s I + J is the kernel of the linear map R → 

R/I ⊗R R/J where r 7→ r(1 ⊗ 1). 

Theorem . There is a unique R-module isomorphism  

M *R (N * P) = (M *R N) ( (M *R P) 

 where m ⊗ (n, p) 7→ (m ⊗ n, m ⊗ p). 
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Proof. Instead of directly writing down an isomorphism, we will put to 

work the essential uniqueness of solutions to a universal mapping 

problem by showing (M xR N) x (M xR P) has the universal mapping 

property of the tensor product M xR (N x P). Therefore by abstract 

nonsense these modules must be isomorphic. That there is an 

isomorphism whose effect on elementary tensors in M *R (N xP) is as 

indicated in the statement of the theorem will fall out of our work. 

For (M xRN)x(MxR P) to be a tensor product of M and N xP, it needs a 

bilinear map to it from M × (N ⊕ P). Let b : M × (N ⊕ P) → (M ⊗R N) 

⊕ (M ⊗R P) by b(m,(n, p)) = (m ⊗ n, m ⊗ p). This function is 

bilinear. We verify the additivity of b in its second component, leaving 

the rest to the reader: 

b(m,(n, p) + (n 0 , p0 )) = b(m,(n + n 0 , p + p 0 )) 

= (m* (n + n * ), m * (p + p 0 )) 

 = (m* n + m * n 0 , m * p + m * p 0 ) 

 = (m * n, m * p) + (m * n 0 , m * p 0 ) 

 = b(m,(n, p)) + b(m,(n 0 , p0 )). 

To show (M*RN)*(M*RP) and b have the universal mapping property of 

M*R(N *P) and ⊗, let B : M × (N ⊕ P) → Q be a bilinear map. We 

seek an R-linear map L making commute. Being linear, L would be 

determined by its values on the direct summands, and these values would 

be determined by the values of L on all pairs (m * n, 0) and (0, m * p) by 

additivity. 

L(m*n, 0) = L(b(m,(n, 0))) = B(m,(n, 0)) and L(0, m*p) = L(b(m,(0, p))) 

= B(m,(0, p)). 

To construct L, the above formulas suggest the maps M × N → Q and M 

× P → Q given by (m, n) 7→ B(m,(n, 0)) and (m, p) 7→ B(m,(0, p)). 

Both are bilinear, so there are R-linear maps M ⊗R N L1 −−−→ Q and 

M ⊗R P L2 −−−→ Q where 

L1(m * n) = B(m,(n, 0)) and L2(m * p) = B(m,(0, p)). 
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Define L on (M *R N) * (M *R P) by L(t1, t2) = L1(t1) + L2(t2). (Notice 

we are defining L not just on ordered pairs of elementary tensors, but on 

all pairs of tensors. We need L1 and L2 to be defined on the whole tensor 

product modules M *R N and M *R P.) The map L is linear since L1 and 

L2 are linear,  

L(b(m,(n, p))) = L(b(m,(n, 0) + (0, p)))  

= L(b(m,(n, 0)) + b(m,(0, p)))  

= L((m * n, 0) + (0, m* p)) by the definition of b 

 = L(m * n, m * p)  

= L1(m * n) + L2(m * p) by the definition of L  

= B(m,(n, 0)) + B(m,(0, p))  

= B(m,(n, 0) + (0, p))  

= B(m,(n, p)). 

Now that we‘ve shown (M *R N) * (M *R P) and the bilinear map b 

have the universal mapping property of M *R (N * P) and the canonical 

bilinear map *, there is a unique linear map f making the diagram 

commute, and f is an isomorphism of R-modules because it transforms 

one solution of a universal mapping problem into another. Taking (m,(n, 

p)) around the diagram both ways, 

f(b(m,(n, p))) = f(m * n, m * p) = m * (n, p). 

Therefore the inverse of f is an isomorphism M ⊗R (N ⊕ P) → (M ⊗R 

N) ⊕ (M ⊗R P) with the effect m ⊗ (n, p) 7→ (m ⊗ n, m ⊗ p). We 

look at the inverse because the theorem is saying something about an 

isomorphism out of M *R (N *P), which is the target of f. 

12.3 SUMMARY 

We study in this unit Tensor Product on Module. We study Z-Bilinear 

and Canonical Module and its properties. We study Additional structure 

of Tensor Product. We study Z-Module.We study vector space tensor 
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product and its example. We study of the property of the tensor product 

and its some important examples. We study R-balance , R-balance linear 

module and its definition with examples.  

1. Linear and Bilinear Maps: Let M and N be R-modules. A map φ : 

M → N is R-linear (or just linear for short) provided that  

a. φ(rv) = rφ(v).  

b. φ(v1 + v2) = φ(v1) + φ(v2).  

2. Suppose that M′   M and N′   N are submodules. Then there is 

an injective linear map from M′ ⊗ N′ into M ⊗ N. This map is 

the identity on elements of the form a ⊗ b, where a ∈ M′ and b ∈ 

N′. 

3. In M *R N, m *0 = 0 and 0 * n = 0 

4. For positive integers a and b with d = (a, b), Z/aZ *Z Z/bZ *= 

Z/dZ as abelian groups. In particular, Z/aZ *Z Z/bZ = 0 if and 

only if (a, b) = 1 

12.4 KEYWORD 

Tensor : A mathematical object analogous to but more general than a 

vector, represented by an array of components that are functions of the 

coordinates of a space 

Z-Bilinear : The bilinear transformation is a mathematical mapping 

of variables. In digital filtering, it is a standard method of mapping the s 

or analog plane into the z or digital plane. It transforms analog filters, 

designed using classical filter design techniques, into their discrete 

equivalents 

Canonical : Included in the list of sacred books officially accepted 

as genuine 

12.5 QUESTIONS FOR REVIEW  

Q. 1 Let {mα : α * A} be a set of generators for an R-module M, and {nβ 

: β * B} a set of generators for an R-module N. Then  
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{mα * nβ : α * A, β * B} 

is a set of generators[8] for M *R N. 

Q. 2 Tensor products M * R N exist. 

Q. 3 Tensor products M * R N are unique up to unique isomorphism. 

That is, given two tensor products τ1 : M × N −→ T1 τ2 : M × N −→ T2 

there is a unique isomorphism i : T1 −→ T2 . Then commutes, that is, τ2 

= i ◦ τ1. 

Q. 4 The monomial tensors m * n (for m * M and n * N) generate M *R 

N as an R-module. 

Q. 5 Consider the Z-modules Z/2 and Z/3. We claim that Z/2*ZZ/3 = 0. 

Equivalently, any map f : Z/2×Z/3 → M to a Z-module M must be the 

zero map. One may see this by taking any such f and considering for any 

x * Z/2, y * Z/3, 

f(x, y) = 3f(x, y) − 2f(x, y) = f(x, 3y) − f(2x, y) = f(x, 0) − f(0, y) = 0. 

Q. 6 For fixed a, b * Z, consider the Z-modules Z/a and Z/b. Then, Z/a 

*Z Z/b = Z/gcd(a, b). 
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12.7 ANSWER TO CHECK YOUR 

PROGRESS 

Check in Progress-I 

Answer Q. 1 Check in Section 1.2 

              Q 2 Check in Section 1.1 

Check in Progress-II 

Answer check in section 2 all solution given.  
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UNIT 13 - CHAIN CONDITIONS ON 

MODULE 
 

STRUCTURE 

13.0 Objective 

13.1 Introduction  

13.2 Chain Conditions  

13.3 Ascending Chain Conditions 

13.4 Summary 

13.5 Keyword 

13.6 Questions for Review  

13.7 Suggestion Reading And References 

13.8 Answer to check your progress  

13.0 OBJECTIVE 

After study this unit we are able to know that  A satisfies pan-acc if and 

only if A satisfies the following conditions:  

(i) A is reduced,  

(ii)  there exists only a finite number of primes p in Z such that pa 

= 0 for some non-zero element a in A, and  

(iii) every countably generated torsion-free submodule of A is 

free. 

In particular, if A is a torsion Z-module then A satisfies pan-acc if and 

only if A satisfies 1-acc. The situation for torsion-free Z-modules is quite 

different. Let A be a Z-module. Given a prime p in Z, we shall say that A 

is a p-module if for each a ∈ A there exists a positive integer n such that 

p na = 0. Note the following simple fact which may be well known but 



Notes 

137 

which we include for convenience. Recall that a Z-module A is called 

reduced provided A does not contain a non-zero divisible submodule. 

13.1 INTRODUCTION 

All rings have identity elements and all modules are unital right modules, 

unless stated otherwise. Let R be a ring and let M be an R-module. Given 

a positive integer n, the module M satisfies n-acc provided every 

ascending chain of n-generated submodules terminates. Moreover, the 

module M satisfies pan-acc in case M satisfies n-acc for every positive 

integer n. In particular, R-module satisfies pan-acc. He also gave an 

example of a right Noetherian ring R such that every free right R-module 

of infinite rank does not satisfy .Renault‘s paper was the inspiration for 

this present work. proved that if R is a commutative Noetherian ring then 

every direct product RI of copies of the R-module R indexed by a set I is 

an R-module satisfying pan-acc, for every such index set I. 

The purpose of this note is to show that if R is a right and left Noetherian 

ring then the right (or left) R-module RI satisfies pan-acc, thus 

generalizing the theorems of both Renault and Frohn. In fact, we shall 

prove rather more, namely that if S and R are rings and M a left S-, right 

R-bimodule such that M is Noetherian both as a left S-module and as a 

right R-module then the right Rmodule MI satisfies pan-acc and the left 

S-module MI satisfies pan-acc, for every index set I. Note R is a ring 

with finite right uniform dimension then any direct productof 

nonsingular Noetherian right R-modules satisfies pan-acc. In particular, 

if R is a right nonsingular right Noetherian ring then the right R-module 

RI satisfies pan-acc, for every index set I. 

It might be worth reminding ourselves of what happens for Abelian 

groups. Let Z denote the ring of integers. Pontrjagin proved that a 

countably generated torsionfree Z-module A satisfies pan-ac Z-module. 

Some Important Theorem  

Lemma 1. Let p be any prime in Z and let a Z-module A be a p-module. 

Then every homomorphic image of A satisfies pan-acc if and only if 

there exists a positive integer k such that p kA = 0. 
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Proof. The sufficiency follows by [4, Theorem 3] because every 

homomorphic image of A is clearly reduced if p kA = 0 for some k. 

Conversely, suppose that every homomorphic image of A satisfies pan-

acc. Suppose that there does not exist a positive integer k such that p kA 

= 0. By [8, Vol I Theorem 32.3] there exists a submodule B of A such 

that B is a direct sum of cyclic submodules and A/B is divisible. Thus A 

= B and A is a direct sum of cyclic submodules. There exists a 

submodule C of A such that C = ⊕ i≥1 Zci , where ci is an element of A 

of order p i for every positive integer i.  

Let D = Z(c1 − pc2) ⊕Z(c2 − pc3) ⊕. . . .  

Then C  = D and C/D is a non-zero divisible submodule of A/D so that A 

has a nonzero divisible homomorphic image, a contradiction. Thus p kA 

= 0 for some positive integer k. 

Our first theorem is a consequence of the above theorem of Baumslag 

and Baumslag. 

Theorem 2. Let Z denote the ring of integers and let A be a Z-module. 

Then every homomorphic image of A is a Z-module satisfying pan-acc if 

and only if A = F ⊕T for some finitely generated free submodule F of A 

and some submodule T of A such that nT = 0 for some positive integer n. 

Proof. (⇒) Note first that  gives that A/B is reduced for every submodule 

B of A. Let T denote the torsion submodule of A. Then A/T is a torsion 

free Z-module satisfying pan-acc. Suppose that A/T is not finitely 

generated. Then there exists a submodule C of A, containing T, such that 

C/T is countably, but not finitely, generated., C/T is free and hence the 

Z-module Q is a homomorphic image of C/T. This implies that Q is a 

homomorphic image of A, a contradiction. Thus A/T is finitely generated 

and hence A = T ⊕F for some finitely generated free submodule F of A. 

Now suppose that T is non-zero. Again using  there exist finitely many 

distinct primes pi (1 ≤ i ≤ t) in Z, for some positive integer t, such that T 

= T(p1) ⊕· · ·⊕T(pt), where T(pi) is the pi-primary component of T, for 

each 1 ≤ i ≤ t. By Lemma 1, for each 1 ≤ i ≤ t there exists a positive 

integer ki such that p kiiT(pi) = 0. Let n = p k1 1 . . . p ktt . Then nT = 0. 
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(⇐) Now suppose that A = F ⊕T where F is a finitely generated free 

submodule and T is a torsion submodule such that nT = 0 for some non-

zero n in Z. Let D be any proper submodule of A. Let E be the 

submodule of A containing D such that E/D is the torsion submodule of 

A/D. Note that D +T ⊆ E. In particular, T ⊆ E so that A/E is finitely 

generated torsion-free and hence free. Moreover E/(D + T) is also finitely 

generated, so that mE⊆ D + T for some positive integer m. Thus mnE⊆ 

D.  it follows that A/D satisfies pan-acc. 

We chose to prove Theorem 2 to point out that if A is a Z-module such 

that every homomorphic image of A satisfies pan-acc then A is a direct 

sum of cyclic submodules . In view of this fact and Pontrjagin‘s Theorem 

above it would appear that there is some relationship between direct sum 

decompositions and the property pan-acc. Now in order to prove the 

above results of Renault and Frohn we shall look at modules satisfying a 

particular property which can be stated in terms of direct sum 

decompositions. 

Let R be a ring. An R-module M will be said to satisfy the direct sum 

condition provided every countably generated submodule is contained in 

a direct sum of finitely generated submodules of M. Clearly every free 

module and every semisimple module satisfies the direct sum condition. 

More generally, every direct sum of finitely generated R-modules 

satisfies the direct sum condition. Note also that if Mi is an R-module 

satisfying the direct sum condition, for all i in some index set I, then the 

R-module ⊕i∈IMi also satisfies the direct sum condition. For, let N be 

any countably generated submodule of the module M = ⊕i∈IMi . For 

each i∈ I, let πi : M → Mi denote the canonical projection. Because, for 

each i∈ I, πi(N) is a countably generated submodule of Mi , there exists a 

submodule Ki of Mi such that Ki is a direct sum of finitely generated 

submodules and πi(N) ⊆ Ki . Let K = ⊕i∈IKi . Then N is contained in 

the submodule K of M and K is a direct sum of finitely generated 

submodules. 

We want to show that certain direct products satisfy the direct sum 

condition, in particular modules of the form MI , the direct product of 

copies of a module M indexed by a set I. If J is a non-empty subset of I 
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then MJ will be considered a submodule of MI in the natural way. If R 

and S are rings and M a left S-, right R-bimodule then MI is a left S-, 

right R-bimodule in the natural way. We first note the following simple 

fact. 

Lemma 3. Let R be a ring and let L be a countably generated submodule 

of an R-module M. Then the following statements are equivalent.  

(i) L is contained in a direct sum of finitely generated 

submodules of M. 

(ii) There exists a submodule K of M containing L such that 

every finitely generated submodule of L is contained in a 

finitely generated direct summand of K. 

Proof. (i) ⇒ (ii). Let Mi (i∈ I) be a collection of finitely generated 

submodules of M such that L ⊆⊕i∈IMi . Then K = ⊕i∈IMi satisfies 

(ii).  

(ii) ⇒ (i). Let L = x1R + x2R + . . . . By hypothesis there exist 

submodules E1 and F1 of K such that K = E1 ⊕F1, E1 is finitely 

generated and x1R ⊆ E1. Again, by hypothesis, there exist submodules 

E2 and F2 of K such that K = E2 ⊕F2, E2 is finitely generated and E1 + 

x2R ⊆ E2. Note that x1R + x2R ⊆ E2 = E1 ⊕(E2 ∩ F1). Repeat this 

argument. For each positive integer n ≥ 2, there exist submodules En and 

Fn of K such that K = En⊕Fn, En is finitely generated and contains x1R 

+ · · · + xnR. Note that En = E1 ⊕(E2 ∩ F1) ⊕. . .(En ∩ Fn−1). It 

follows that L is contained in the direct sum E1 ⊕(E2 ∩ F1) ⊕(E3 ∩ 

F2). . . , which is a direct sum of finitely generated submodules because 

En is a finitely generated submodule for each positive integer n. 

Lemma 4. Let R and S be rings and let M be a left S-, right R-bimodule 

such that the left S-module M is Noetherian. Let I denote an index set 

and X the left S-, right R-bimodule MI . Then, for each finitely generated 

submodule F of the right R-module X, there exist a finite subset J of I 

and an R-isomorphism φ : X → X such that φ(F) ⊆ MJ . 

Proof. Let F be any finitely generated submodule of the right R-module 

X. Then there exist a positive integer k and elements xi ∈ F (1 ≤ i ≤ k) 
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such that F = x1R + · · · + xkR. Let x = x1. There exist elements mi ∈ M 

(i∈ I) such that x = (mi). The S-submodule ∑ i∈ISmi is finitely generated 

and hence there exists a finite subset J1 of I such that ∑ i∈ISmi = ∑ j∈J1 

Smj . For each i in I there exist elements sij∈ S (j ∈ J1) such that mi = ∑ 

j∈J1 sijmj . Define a mapping φ1 : X → X as follows: for each element 

(ui) in X, φ1(ui) = (vi) where vi = ui if i∈ J1 and vi = ui − ∑ j∈J1 sijuj if 

i∈ I\J1. It is not difficult to check that φ1 is an R-isomorphism from X to 

X and that φ1(x) ∈ MJ1. 

Let I1 = I\J1, let X1 = MJ1 and let X2 = MI1 so that X = X1 ⊕X2. For 

each 2 ≤ i ≤ k there exist elements yi∈ X1 and zi∈ X2 such that φ1(xi) = 

yi +zi . By induction on k there exists a finite subset J2 of I1 and an R-

isomorphism φ2 : X2 → X2 such that φ2(z2R + · · · + zkR) ⊆ MJ2 . 

Now φ3 = ι + φ2 is an R-isomorphism from X to X where ι is the identity 

mapping on X1. Finally note that φ = φ3φ1 is an R-isomorphism from X 

to X such that φ(F) ⊆ MJ where J is the finite subset J1 ∪ J2 of I 

Theorem 5. Let R and S be rings and let M be a left S-, right R-bimodule 

such that the left S-module M is Noetherian and the right R-module M is 

finitely generated. Then the right R-module MI satisfies the direct sum 

condition for every index set I. 

Proof. Let F be any finitely generated submodule of the right R-module 

X = MI . By Lemma 4 there exist a finite subset J of I and an R-

isomorphism φ : X → X such that φ(F) ⊆ MJ . Let J ′ = I\J, let X1 = φ −1 

(MJ ) and let X2 = φ −1 (MJ ′ ). Then the right R-module X = X1 ⊕X2 

is a direct sum of the submodules X1 and X2, X1 is a finitely generated 

right R-module and F ⊆ X1. By Lemma 3 X satisfies the direct sum 

condition 

Next we give an example of a module M which satisfies the direct sum 

condition but which is not itself a direct sum of finitely generated 

submodules. 

Example 6. Let Z denote the ring of integers and let M denote the direct 

product Z I for any infinite index set I. Then the Z-module M satisfies 

the direct sum condition but M is not a direct sum of finitely generated 

submodules. 
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Proof. By Theorem 5 the Z-module M satisfies the direct sum condition. 

However M is not a direct sum of finitely generated submodules because 

M is not projective. 

Let R be a ring and let M be a non-zero module. Then M has finite 

uniform dimension provided M does not contain an infinite direct sum of 

non-zero submodules. In this case there exists a positive integer n such 

that n is the maximum number of submodules of M which form a direct 

sum. The integer n is called the uniform dimension of M and is denoted 

by u(M). In case M = 0 we say that M is zero dimensional and write 

u(M) = 0. The ring R has finite right uniform dimension in case the right 

R-module R has finite uniform dimension Note that every Noetherian 

module has finite uniform dimension. The next two results concern rings 

with finite right uniform dimension. 

Lemma 7. Let R be a ring with finite right uniform dimension, let n be a 

positive integer and let M be a nonsingular n-generated R-module. Then 

M has finite uniform dimension and u(M) ≤ nu(R). 

Proof. There exists an epimorphism from F = R(n) to M with kernel K. 

Because M is nonsingular, K is an essentially closed submodule of F and 

hence u(M) = u(F/K) ≤ u(F) = nu(R) 

Let R be a ring and let M be any R-module. Then the singular submodule 

Z(M) of M is defined to be the set of elements m in M such that mE = 0 

for some essential right ideal E of R. The second singular submodule of 

M is the submodule Z2(M) of M containing Z(M) such that Z2(M)/Z(M) 

is the singular submodule of the module M/Z(M). In the Goldie torsion 

theory, a module M is torsion if M = Z2(M) and is torsion-free if it is 

nonsingular, i.e. Z(M) = 0 (see [15] for more details). 

Let R be a ring and let M be an R-module such that MA = 0 for some 

ideal A of R. Then M is both an R-module and an (R/A)-module. The 

singular submodule of the R-module M need not coincide with the 

singular submodule of the (R/A)-module M and we shall denote these 

submodules by Z(MR) and Z(MR/A), respectively. Similarly we denote 

by Z2(MR) and Z2(MR/A) the second singular submodules of M 

considered as an R-module and as an (R/A)-module, respectively. When 
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there is no ambiguity we shall use Z(M) and Z2(M), as indicated above. 

We want to make one further observation at this point, namely if R is a 

prime (or even semiprime) right Noetherian ring then Z2(M) = Z(M) for 

every R-module M. 

Given a ring R and an R-module M, if N is a submodule of M then 

Zorn‘s Lemma gives a submodule K of M maximal among the 

submodules H of M such that N ∩ H = 0. In this case, K is called a 

complement of N (in M). Note that K is essentially closed in M in the 

sense of [9]. The next result is crucial for the remainder of this paper. 

Theorem 8. Let R be a right Noetherian ring, let M be a right R-module 

which satisfies the direct sum condition and let n be a positive integer. 

Then M satisfies n-acc if and only if Z2(M) satisfies n-acc. 

Proof. The necessity is clear. Conversely, suppose that Z2(M) satisfies 

n-acc. Let L1 ⊆ L2 ⊆ L3 ⊆ . . . be any ascending chain of n-generated 

submodules of M. Let L = ∪ i≥1 Li . Let K be a complement of Z2(L) in 

L. Note that for all i ≥ 1, Li/Z2(Li) is an n-generated nonsingular module 

and hence u(Li/Z2(Li)) ≤ nu(R) by Lemma 7. Moreover note that for all i 

≥ 1, Li ∩ K embeds in Li/Z2(Li) so that u(Li ∩ K) ≤ nu(R). Now the 

ascending chain L1 ∩ K ⊆ L2 ∩ K ⊆ . . . gives that Li ∩ K is essential in 

Li+1 ∩ K for all i ≥ k, for some positive integer k, and hence Lk ∩ K is 

essential in K. By hypothesis, there exists a submodule H of M such that 

L ⊆ H, H = H1 ⊕H2 for some submodules H1 and H2, H1 is finitely 

generated and Lk ⊆ H1. Let π : H → H2 denote the canonical projection. 

Let x ∈ L. Because Z2(L) ⊕K is essential in L, we have (xR + K)/K is 

Goldie torsion and hence so too is [xR + (Lk ∩ K)]/(Lk ∩ K). It follows 

that π(xR) is Goldie torsion. Thus π(L1) ⊆ π(L2) ⊆ . . . is an ascending 

chain of n-generated submodules of Z2(M). There exists a positive 

integer t such that π(Lt) = π(Lt+1) = . . . . But H1 is Noetherian and 

hence, without loss of generality, Lt ∩ H1 = Lt+1 ∩ H1 = . . . . It follows 

that Lt = Lt+1 = . . . , as required. 

Corollary 9. Let R be a right Noetherian ring and let M be a nonsingular 

right R-module which satisfies the direct sum condition. Then M satisfies 

pan-acc. 
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Proof. By the theorem. 

Lemma 10. Let R be a right Noetherian ring and let M be a right R-

module which satisfies the direct sum condition but does not satisfy pan-

acc. Let P be an ideal of R which is maximal in the collection of ideals A 

of R such that there exist a positive integer k and a properly ascending 

chain H1 ⊆ H2 ⊆ H3 . . . of k-generated submodules Hi (i ≥ 1) of M with 

HiA = 0 for all i ≥ 1. Then P is a prime ideal of R. 

Proof. There exist a positive integer n and a properly ascending chain L1 

⊆ L2 ⊆ L3 ⊆ . . . of n-generated submodules Li (i ≥ 1) such that LiP = 0 

for all i ≥ 1. Suppose that P is not a prime ideal of R. Then there exist 

ideals A and B of R, each properly containing P, such that AB ⊆ P. Note 

that A is a q-generated right ideal of R, for some positive integer q, and 

hence LiA is an nq-generated submodule of M for each i ≥ 1. By the 

choice of P, the ascending chain L1A ⊆ L2A ⊆ . . . must terminate and 

hence there exists a positive integer s such that LsA = Ls+1A = Ls+2A = 

. . . . Let L denote the countably generated submodule ∪ i≥1 Li . By 

hypothesis there exists a submodule K of M such that L ⊆ K, K = K1 

⊕K2 for some submodules K1 and K2, K1 is finitely generated and Ls 

⊆ K1. Let π : K → K2 denote the canonical projection. Note that ker π = 

K1 which is a Noetherian module. Moreover, for each i ≥ s, π(Li) is an n-

generated submodule of M such that π(Li)A ⊆ π(Ls) = 0. By the choice 

of P, there exists an integer t ≥ s such that π(Lt) = π(Lt+1) = . . . . But K1 

is Noetherian so that without loss of generality we can suppose that Lt ∩ 

K1 = Lt+1 ∩ K1 = . . . . It follows that Lt = Lt+1 = . . . , a contradiction. 

Thus P is a prime ideal of R. 

Lemma 11. Let R be a commutative Noetherian ring and let M be an R-

module which satisfies the direct sum condition but does not satisfy n-

acc for some positive integer n. Let P be an ideal of R which is maximal 

in the collection of ideals A of R such that there exists a properly 

ascending chain H1 ⊆ H2 ⊆ H3 ⊆ . . . of n-generated submodules Hi (i ≥ 

1) of M with HiA = 0 for all i ≥ 1. Then P is a prime ideal of R. 
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Proof. We adapt the proof of Lemma 10. In this case we can replace the 

ideals A and B by elements a and b. Note that Lia is an n-generated 

submodule of M for each i ≥ 1 and the proof proceeds as before. 

Let R be a ring and let M be an R-module. Given a non-empty set W in 

M, the annihilator of W in R will be denoted by ann(W), i.e. ann(W) is 

the set of 

elements r in R such that wr = 0 for all w ∈ W. Note that ann(W) is a 

right ideal of R and in case W is a submodule of M then ann(W) is an 

ideal of R. 

Theorem 12. Let R be a commutative Noetherian ring, let M be an R-

module which satisfies the direct sum condition and let n be a positive 

integer. Then M satisfies n-acc if and only if for each ascending chain L1 

⊆ L2 ⊆ L3 ⊆ . . . of n-generated submodules Li (i ≥ 1) of M there exists 

a positive integer k such that ann(Lk) = ann(Lk+1) = . . . . 

Proof. The necessity is clear. Conversely, suppose that M satisfies the 

stated condition but that M does not satisfy n-acc. By Lemma 11 there 

exists a prime ideal P of R such that P is maximal with the property that 

LiP = 0 for all submodules Li (i ≥ 1) such that L1 ⊆ L2 ⊆ . . . is a proper 

ascending chain of n-generated submodules of M. Let N denote the set of 

elements m ∈ M such that mP = 0. Then the right (R/P)-module N does 

not satisfy n-acc. By Theorem 8, Z(NR/P ) does not satisfy n-acc. 

Therefore there exist a properly ascending chain H1 ⊆ H2 ⊆ . . . of n-

generated submodules of Z(NR/P ). By hypothesis, there exists a positive 

integer k such that ann(Hk) = ann(Hk+1) = . . . . Because Hk is finitely 

generated there exists an ideal A of R, properly containing P, such that 

HkA = 0. But then HiA = 0 for all i ≥ k, which contradicts the choice of 

P. The result follows. 

            A prime ring is called right bounded if every essential right ideal 

contains a nonzero two-sided ideal. Also a ring R is called fully right 

bounded if every prime homomorphic image of R is right bounded. A 

ring R is called a right FBN ring if R is a right Noetherian right fully 

bounded ring. Clearly commutative Noetherian rings are FBN rings and 
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so too are right Noetherian rings which satisfy a polynomial identity (see, 

for example. We have the following result for right FBN rings. 

Theorem 13. Let R be a right FBN ring and let M be a right R-module 

which satisfies the direct sum condition. Then M satisfies pan-acc if and 

only if for each positive integer n and each ascending chain L1 ⊆ L2 ⊆ . 

. . of n-generated submodules Li (i ≥ 1) of M there exists a positive 

integer k such that ann(Lk) = ann (Lk+1) = . . . . 

Proof. Try Self 

Lemma 14. Let R be a right Noetherian ring and let M be a right R-

module which satisfies the direct sum condition such that for each prime 

ideal P of R for which LiP = 0 for all submodules Li (i ≥ 1) of M such 

that L1 ⊆ L2 ⊆ . . . is an ascending chain of n-generated submodules of 

M there exists a finite subset F of ∪ i≥1 Li with P = ann(F). Then M 

satisfies pan-acc. 

Proof. Suppose that M does not satisfy pan-acc. With the notation of that 

proof we obtain an ascending chain H1 ⊆ H2 ⊆ . . . of n-generated 

submodules of Z(NR/P ), where N is the set of m ∈ M such that mP = 0. 

By hypothesis, there exists a finite subset F of N such that P = ann(F). 

But for each f in F there exists a right ideal E of R, containing P, such 

that E/P is an essential right ideal of R/P and fE = 0. Thus there exists a 

right ideal E′ of R, containing P, such that E′/P is an essential right ideal 

of R/P and gE′ = 0 for all g ∈ F. Thus E′ ⊆ P, a contradiction. It follows 

that M satisfies pan-acc. 

Lemma 15. Let S and R be rings and let M be a left S-, right R-bimodule 

such that M is a finitely generated left S-module. Let X denote the direct 

product MI and let A be an ideal of R such that A = ann(Y ) for some 

submodule Y of the right R-module X. Then A = ann(F) for some finite 

subset F of Y . 

Proof. Let L denote the set of elements m in M such that m is a 

component of some element of Y . Clearly uA = 0 for all u ∈ L. Now SL 

is a submodule of the left S-module M so that SL = Sx1 + · · · + Sxn for 

some positive integer n and elements xi ∈ L (1 ≤ i ≤ n). There exists a 
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finite subset F of elements of Y such that for each 1 ≤ i ≤ n, xi is a 

component of an element of F. It is now clear that if an element r in R 

satisfies fr = 0 for all f ∈ F then xir = 0 for all 1 ≤ i ≤ n so that SLr = 0 

and hence Y r = 0. It follows that A = ann(F). 

Theorem 16. Let S and R be rings and let M be a left S-, right R-

bimodule such that the left S-module M is Noetherian and the right R-

module M is Noetherian. The the right R-module MI satisfies pan-acc, 

for every index set I. 

Proof. Let A = ann(MR). Note that M = Sm1 + · · · + Smk for some 

positive integer k and elements mi ∈ M (1 ≤ i ≤ k). Define a mapping φ : 

R → M(k) by φ(r) = (m1r, . . . , mkr) for all r ∈ R. Then φ is an R-

homomorphism with kernel A so that the ring R/A is right Noetherian. 

Without loss of generality we can suppose that A = 0. 

Corollary 17. Let S and R be rings and let M be a left S-, right R-

bimodule such that the left S-module M is Noetherian and the right R-

module M is Noetherian. Let Ni (i∈ I) be any non-empty collection of 

submodules of the right R-module M. Then the right R-module ∏ i∈I Ni 

satisfies pan-acc. 

Proof: Try Self 

Check In Progress-I 

Note: i) Write your answers in the space given below.  

Q. 1 Let R be a ring with finite right uniform dimension, let n be a 

positive integer and let M be a nonsingular n-generated R-module. Then 

M has finite uniform dimension and u(M) ≤ nu(R 

Solution : 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

Q. 2. Let S and R be rings and let M be a left S-, right R-bimodule such 

that the left S-module M is Noetherian and the right R-module M is 
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Noetherian. The the right R-module MI satisfies pan-acc, for every index 

set I. 

Solution : 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

13.2 CHAIN CONDITIONS 

Imposing chain conditions on the poset of submodules of a module, or on 

the poset of ideals of a ring, 

makes a module or ring more tractable and facilitates the proofs of deep 

theorems. 

Proposition: Let Σ be a poset with respect to ≤ . TFAE  

(i) Every increasing sequence  

x1 ≤ x2 ≤ . . . ≤ xn ≤ . . . in Σ  

is stationary, that is, 

 (∃n)(∀m ≥ n) xm = xn ; 

(ii)  Every nonempty subset of Σ has a maximal element. 

Proof: (i) =⇒ (ii): If (ii) is false, then there is a nonempty subset X of Σ 

with no maximal element, so ∃x1 ∈X ; 

(∃x2 ∈ X) x1 <x2 ; 

(∃x3 ∈ X) x1 < x2 <x3 ; 

so continuing, X contains 

x1< x2 < x3 < . . . <xn< . . . 

which is strictly increasing, so (i) fails. 

(ii) =⇒ (i): If (ii) holds and 

x1 ≤ x2 ≤ . . . ≤ xn ≤ . . . (∗) 
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is an increasing sequence in Σ , then 

{ x1, . . . , xn , . . . } 

has a maximal element, say xk , so for every m ≥ k , 

xm ≥ xk ≥ xm , 

whence equality, proving (∗) is stationary, and (i) holds. 

Let Σ be the set of submodules of a module M . Regarding Σ as a 

poset with respect to ⊆ , we refer to 

(i) as the ascending chain condition (a.c.c.) and 

(ii) as the maximal condition. 

Any module satisfying the a.c.c. or equivalently the maximal 

condition is called Noetherian. 

On the other hand regarding Σ as a poset with respect to ⊇ , we refer 

to 

(i) as the descending chain condition (d.c.c.) and 

(ii) as the miminal condition. 

Any module satisfying the d.c.c. or equivalently the minimal condition is 

called Artinian. 

Examples: (1) Any finite module satisfies both the a.c.c. and d.c.c 

These include all finite abelian groups, regarded as Z-modules. 

(2) The ring Z (regarded as a Z-module) satisfies the a.c.c but not the 

d.c.c. 

(3) Consider the group Q under addition. Then Z is a subgroup and we 

may form the quotient group 

Q/Z = { q + Z | q ∈ Q } . 

Fix a prime number p , and put 

G = { a/pn + Z | n ≥ 0 , a ∈ Z } 

and, for i ≥ 0 , 
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Gi = { a/pi + Z | a ∈ Z } . 

Clearly G is a subgroup of Q/Z and each Gi is a subgroup of G . 

Moreover,                      G0   G1   . . . Gn  . . 

……………………………. (∗) 

is a strictly increasing sequence, so, regarded as a Z-module, 

G does not satisfy the a.c.c. 

Exercise: Prove that the only subgroups of G are G and Gi for i ≥ 0 . 

By (∗) and this exercise, there are no infinite strictly descending chains 

of subgroups of G , so, as a Z-module,G satisfies the d.c.c 

(4) Fix a prime number p and put 

H = { m/pn | m ∈ Z , n ≥ 0 } 

Then clearly H is a subgroup of Q and 

0 −→ Z −→ H −→ H/Z = G −→ 0 

is exact, where the second mapping is inclusion and G is the group of (3). 

Thus 

H doesn‘t satisfy the d.c.c. 

because it has a subgroup Z which doesn‘t, and 

H doesn‘t satisfy the a.c.c. 

because it has a quotient G which doesn‘t. 

(5) The polynomial ring F[x] , where F is a field, satisfies the a.c.c. but 

not the d.c.c. on ideals. 

The proof is left as an exercise, using the fact that F[x] is a PID, and 

copying the details of (2). 

(6) The polynomial ring F[x1 , x2 , . . . ] using infinitely many 

indeterminates does not satisfy the d.c.c. on ideals (as for (5)), 

but also does not satisfy the a.c.c. since 
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h x 1i   h x 1 , x 2i   . . .   h x 1 , . . . x ni  . . . 

is an infinite strictly increasing chain of ideals. 

Proposition: Let M be an A-module. Then M is Noetherian iff every 

submodule of M is finitely generated. 

Proof: (=⇒) Suppose M is Noetherian and let N be a submodule of M . 

Let 

Σ = { finitely generated submodules of N } . 

Then Σ has a maximal element N0 

If N 6= N0 then 

∃x ∈ N\N0 , 

so hN0 ∪ {x}i is a finitely generated submodule of N bigger than N0 , 

contradicting maximality. 

Hence N0 = N , so N is finitely generated. 

(⇐=) Suppose all submodules of M are finitely generated. Let  

M1 ⊆ M2 ⊆ . . . ⊆Mn⊆ . . . (∗) 

be an ascending chain of submodules. Then [ ∞i=1 Mi is easily seen to 

be a submodule of M , 

so is generated by finitely many elements, say 

x1 , . . ………………………………….. , xr . 

Then 

(∀j = 1, . . . , r) (∃ij )xj∈Mij . 

Put m = max { i1 , . . . , ir } so  

(∀j) xj∈Mm . 

so equality holds, and (∗) is stationary. 

Theorem: Let 0 −→ M′ α −→ M β −→ M′′; −→ 0 be an exact sequence 

of A-modules. Then M is Noetherian [Artinian] iff M′ and M′′ are. 
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Proof: We prove the result for Noetherian, the argument for Artinian 

being similar. 

 (=⇒) Suppose M is Noetherian. 

Because α is injective, any ascending chain of submodules of M′ 

corresponds to an ascending chain of submodules of M , so the former is 

stationary, since the latter is.  

Hence M′ is Noetherian.  

Because β is surjective,  

M′′ ∼= M/ ker β 

so that submodules of M′′ correspond to submodules of M containing ker 

β , and the correspondence is inclusion preserving. 

Hence any ascending chain of submodules of M′′ corresponds to an 

ascending chain of submodules of M , so the former is stationary, since 

the latter is.  

Hence M′′ is Noetherian. 

( ⇐=) Suppose M ′ , M′′ are Noetherian.  

Let L 1 ⊆ L 2 ⊆ . . . ⊆ L n ⊆ . . .                                         (∗) 

be an ascending chain of submodules of M . Then  

α − 1 ( L 1 ) ⊆ α − 1 ( L 2 ) ⊆ . . . ⊆ α − 1 ( L n ) ⊆ . . . 

s an ascending chain of submodules of M ′ , and 

β ( L 1 ) ⊆ β ( L 2 ) ⊆ . . . ⊆ β ( L n ) ⊆ . . . 

is an ascending chain of submodules of M′′ . 

Since these sequences are stationary, 

( ∃ n 1)( ∀ m ≥ n 1 ) α − 1                               ( L m) = α − 1 ( L n 1 ) 

( ∃ n 2)( ∀ m ≥ n 2 )                                         β ( L m) = β ( L n 2 ) 

Put n = max { n1 , n2 } , so (∀m ≥ n) , 



Notes 

153 

α−1(Lm) = α−1(Ln) and β(Lm) = β(Ln) . 

We will prove that 

(∀m ≥ n) Lm = Ln . 

Let m ≥ n and x ∈Lm . Then 

β(x) ∈ β(Lm) = β(Ln) , 

so, for some y ∈ Ln , β(x) = β(y) , so, by exactness, 

x − y ∈ker β = im α . 

But Ln ⊆Lm , so x − y ∈ Lm , giving 

x − y = α(z) ∃z ∈ α−1(Lm) 

But α−1(Lm) = α−1(Ln) , so α(z) ∈ Ln , giving  

x = y + α(z) ∈ Ln 

Hence  

Lm ⊆ Ln ⊆Lm , 

whence equality. This proves (∗) is stationary, so M is Noetherian, and 

the Theorem is proved. 

Corollary: If M1 , . . . , Mn are Noetherian [Artinian] A-modules then so 

is  

M1 ⊕……………………………………….. . . . ⊕Mn . 

Proof: This follows by induction and the previous Theorem applied to 

the exact sequence 

0 −→ Mn α −→ Lni=1 Mi β −→ Ln−1 i=1 Mi −→ 0 

where 

α : x 7→ (0, . . . , 0, x) 

β : (x1, . . . , xn) 7→ (x1, . . . , xn−1) . 



Notes 

154 

Call a ring A Noetherian [Artinian] if it is so as an A-module, that is, if it 

satisfies the a.c.c. [d.c.c.] on ideals. 

 Check In Progress-II 

Note: i) Write your answers in the space given below.  

Q. 1 Let 0 −→ M′ α −→ M β −→ M′′; −→ 0 be an exact sequence of A-

modules. Then M is Noetherian [Artinian] iff M′ and M′′ are. 

Solution : 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

Q. 2. Any finite module satisfies both the a.c.c. and d.c.c 

Solution : 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

13.3 ASCENDING CHAIN CONDITION 

In mathematics, the ascending chain condition (ACC) and descending 

chain condition (DCC) are finiteness properties satisfied by 

some algebraic structures, most importantly ideals in 

certain commutative rings. These conditions played an important role in 

the development of the structure theory of commutative rings in the 

works of David Hilbert, Emmy Noether, and Emil Artin. The conditions 

themselves can be stated in an abstract form, so that they make sense for 

any partially ordered set. This point of view is useful in abstract 

algebraic dimension theory due to Gabriel and Rentschler. 

Definition:- A partially ordered set (poset) P is said to satisfy 

the ascending chain condition (ACC) if every strictly ascending 



Notes 

155 

sequence of elements eventually terminates.Equivalently, given 

any weakly ascending sequence 

                   ……………… 

there exists a positive integer n such that 

                        

Similarly, P is said to satisfy the descending chain condition (DCC) if 

every strictly descending sequence of elements of P eventually 

terminates, that is, there is no infinite descending chain. Equivalently, 

every weakly descending sequence 

               …………………………………..of 

elements of P eventually stabilizes. 

Comments 

 The descending chain condition on P is equivalent to P being well-

founded: every nonempty subset of P has a minimal element (also 

called the minimal condition or minimum condition). 

 Similarly, the ascending chain condition is equivalent to P being 

converse well-founded: every nonempty subset of P has a maximal 

element (the maximal condition or maximum condition). 

 Trivially every finite poset satisfies both ACC and DCC. 

 A totally ordered set that satisfies the descending chain condition is 

a well-ordered set (assuming the axiom of dependent choice). 

13.4 SUMMARY  

We study in this unit about Ascending Chain Condition and its 

properties. We study Chain Condition and its properties. We study  some 

lemma for chain condition on module. We study chain conditions with its 

examples and proposition. We study Z-Module and its examples.  

1. Let p be any prime in Z and let a Z-module A be a p-module. 

Then every homomorphic image of A satisfies pan-acc if and 

only if there exists a positive integer k such that p kA = 0. 

2. Let R be a ring and let L be a countably generated submodule of 

an R-module M. Then the following statements are equivalent.  
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L is contained in a direct sum of finitely generated submodules of 

M. 

There exists a submodule K of M containing L such that every 

finitely generated submodule of L is contained in a finitely 

generated direct summand of K. 

3. Let R be a right Noetherian ring, let M be a right R-module which 

satisfies the direct sum condition and let n be a positive integer. 

Then M satisfies n-acc if and only if Z2(M) satisfies n-acc. 

4. Let R be a ring with finite right uniform dimension, let n be a 

positive integer and let M be a nonsingular n-generated R-

module. Then M has finite uniform dimension and u(M) ≤ nu(R). 

5. Let S and R be rings and let M be a left S-, right R-bimodule such 

that the left S-module M is Noetherian and the right R-module M 

is Noetherian. The the right R-module MI satisfies pan-acc, for 

every index set I. 

13.5 KEYWORD 

Ascending :Increasing in size or importance 

Chain Condition :The ascending chain condition, commonly 

abbreviated "A.C.C.," for a partially ordered set requires that all 

increasing sequences in become eventually constant. A module fulfils the 

ascending chain condition if its set of submodules obeys 

the condition with respect to inclusion 

Epimorphism :A morphism in a category is an epimorphism if, 

for any two morphisms , implies . In the categories of sets, groups, 

modules, etc. 

13.6 EXERCISE  

(1) Any ring with only finitely many ideals (such as a finite ring or a 

field) is certainly both Noetherian and Artinian.  

(2) The ring F[x1, . . . ,xn, . . .] where F is a field is neither Noetherian 

nor Artinian, but is an integral domain, so has a field of fractions, which 
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is both Noetherian and Artinian. Thus subrings of Noetherian [Artinian] 

rings need not be Noetherian [Artinian]. However quotients are well-

behaved. we get immediately  

 Corollary: Any homomorphic image of a Noetherian [Artinian] ring is 

Noetherian [Artinian].  

Theorem: Let A be a Noetherian [Artinian] ring and M a finitely 

generated A-module. Then M is Noetherian [Artinian].  

Proof: By general theory (M ∼= An / N for some n > 0 and some 

submodule N of An . But An is Noetherian [Artinian], being a direct sum 

of Noetherian [Artinian] modules. 

 Hence, by the previous Corollary, M is Noetherian [Artinian]. 
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13.8 ANSWER TO CHECK YOUR 

PROGRESS 

Check in Progress-I 

Answer Q. 1 Check in Theorem 16 

              Q 2 Check in Lemma 7 

Check in Progress-II 

Answer check in section 2 all solution given.  
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UNIT 14 -: NOETHERIAN AND 

ARTINIAN MODULES 
 

STRUCTURE 

14.0 Objective 

14.1 Introduction : Noetherian Module 

14.1.1 Charactrizations and Properties 

14.1.2 Use in Other Structure 

14.1.3 Hilbert's Basis Theorem 

14.1.4 Zorn's Lemma 

14.2 Definitions and Elementary Properties 

14.3 Decomposition into Indecomposables of a finite length Module 

14.4 Artinian Modules and Rings 

14.5 Artinian Module 

14.6 Summary 

14.7 Keyword 

14.8 Exercise  

14.9 Suggestion Reading And References 

14.10 Answer to check your progress 

14.0 OBJECTIVE 

* We able to study in this unit about Artinian Module and Ring 

* Learn Hilbert Basis Theorem 

* Learn Zorn‘s Lemma 

* Learn Noetherian Module 
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14.1 INTRODUCTION: NOETHERIAN 

MODULE 

In abstract algebra, a Noetherian module is a module that satisfies 

the ascending chain condition on its submodules, where the submodules 

are partially ordered by inclusion. 

Historically, Hilbert was the first mathematician to work with the 

properties of finitely generated submodules. He proved an important 

theorem known as Hilbert's basis theorem which says that any ideal in 

the multivariate polynomial ring of an arbitrary field is finitely generated. 

However, the property is named after Emmy Noether who was the first 

one to discover the true importance of the property. 

A module for which every submodule has a finite system of generators. 

Equivalent conditions are: the ascending chain 

condition for submodules (every strictly ascending chain of submodules 

breaks off after finitely many terms); every non-empty set of submodules 

ordered by inclusion contains a maximal element. Submodules and 

quotient modules of a Noetherian module are Noetherian. If, in an exact 

sequence 

0→M′→M→M′′→0,0→M′→M→M″→0, 

M′M′ and M′′M″ are Noetherian, then so is MM. A module over 

a Noetherian ring is Noetherian if and only if it is finitely generated. A 

module has a composition series if and only if it is both Artinian and 

Noetherian. 

14.1.1 Characterizations And Properties 

In the presence of the axiom of choice, two other characterizations are 

possible: 

 Any nonempty set S of submodules of the module has a maximal 

element (with respect to set inclusion.) This is known as 

the maximum condition. 

 All of the submodules of the module are finitely generated. 
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If M is a module and K a submodule, then M is Noetherian if and only 

if K and M/K are Noetherian. This is in contrast to the general situation 

with finitely generated modules: a submodule of a finitely generated 

module need not be finitely generated. 

Examples 

 The integers, considered as a module over the ring of integers, is a 

Noetherian module. 

 If R = Mn(F) is the full matrix ring over a field, and M = Mn 1(F) is 

the set of column vectors over F, then M can be made into a module 

using matrix multiplication by elements of R on the left of elements 

of M. This is a Noetherian module. 

 Any module that is finite as a set is Noetherian. 

 Any finitely generated right module over a right Noetherian ring is a 

Noetherian module. 

14.1.2 Use In Other Structures 

A right Noetherian ring R is, by definition, a Noetherian right R module 

over itself using multiplication on the right. Likewise a ring is called left 

Noetherian ring when R is Noetherian considered as a left R module. 

When R is a commutative ring the left-right adjectives may be dropped, 

as they are unnecessary. Also, if R is Noetherian on both sides, it is 

customary to call it Noetherian and not "left and right Noetherian". 

The Noetherian condition can also be defined on bimodule structures as 

well: a Noetherian bimodule is a bimodule whose poset of sub-bimodules 

satisfies the ascending chain condition. Since a sub-bimodule of an R-

S bimodule M is in particular a left R-module, if M considered as a 

left R module were Noetherian, then M is automatically a Noetherian 

bimodule. It may happen, however, that a bimodule is Noetherian 

without its left or right structures being Noetherian. 

Let  be a ring and  a left -module. Then we say that  is 

a Noetherian module if it satisfies the following property, known as 

the ascending chain condition (ACC): 

For any ascending chain 



Notes 

162 

 

of submodules of , there exists an integer  so 

that  (i.e. the chain eventually 

stabilizes, or terminates). 

We say that a ring  is left (right) Noetherian if it is Noetherian 

as a left (right) -module. If  is both left and right 

Noetherian, we call it simply Noetherian. 

Theorem. The following conditions are equivalent for a left -

module: 

1.  is Noetherian. 

2. Every submodule  of  is finitely generated (i.e. can 

be written as  for 

some ). 

3. Every collection of submodules of  has a maximal 

element. 

The second condition is also frequently used as the definition for 

Noetherian. 

We also have right Noetherian modules with the appropriate 

adjustments. 

Proof. In general, condition 3 is equivalent to ACC. It thus 

suffices to prove that condition 2 is equivalent to ACC. 

Suppose that condition 2 holds. Let  be an 

ascending chain of submodules of . Then is a 

submodule of , so it must be finitely generated, say by 

elements . Each of the  is contained in one 

of , say in . If we set , then 

for all , so

Thus  satisfies ACC. 
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On the other hand, suppose that condition 2 does not hold, that 

there exists some submodule  of  that is not finitely 

generated. Thus we can recursively define a sequence of 

elements  such that  is not in the submodule 

generated by . Then the sequence

is an ascending chain 

that does not stabilize.  

Note: The notation  denotes the module generated 

by . 

Hilbert's Basis Theorem guarantees that if  is a Noetherian 

ring, then  is also a Noetherian ring, for finite . 

It is not a Noetherian -module. 

14.1.3 Hilbert's Basis Theorem 

Hilbert's Basis Theorem is a result concerning Noetherian rings. It 

states that if  is a (not necessarily commutative) Noetherian ring, then 

the ring of polynomials  is also a Noetherian 

ring. (The converse is evidently true as well.) 

Note that  must be finite; if we adjoin infinitely many variables, then 

the ideal generated by these variables is not finitely generated. 

The theorem is named for David Hilbert, one of the great mathematicians 

of the late nineteenth and twentieth centuries. He first stated and proved 

the theorem in 1888, using a nonconstructive proof that led Paul Gordan 

to declare famously, "Das ist nicht Mathematik. Das ist Theologie. [This 

is not mathematics. This is theology.]" In time, though, the value of 

nonconstructive proofs was more widely recognized. 

Proof 

By induction, it suffices to show that if  is a Noetherian ring, then so 

is . 

To this end, suppose that  is an ascending chain of 

(two-sided) ideals of . 
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Let  denote the set of elements  of  such that there is a 

polynomial in  with degree at most  and with  as the coefficient 

of . Then  is a two-sided ideal of ; furthermore, for 

any , , Since  is Noetherian, 

it follows that for every , the chain stabilizes 

to some ideal . Furthermore, the ascending chain

also stabilizes to some ideal . Then 

for any  and any , We claim that the 

chain  stabilizes at . For this, it suffices to show that for 

all , . We will thus prove that all polynomials 

of degree  in  are also elements of , by induction on . 

For our base case, we note that , and these ideals are 

the sets of degree-zero polynomials in  and , respectively. 

Now, suppose that all of 's elements of degree  or lower are 

also elements of . Let  be an element of degree  in . 

Since there exists some element  with the same 

leading coefficient as . Then by inductive hypothesis,

so  

14.1.4 Zorn's Lemma 

Background 

Let  be a partially ordered set. 

We say that  is inductively ordered if every totally 

ordered subset  of  has an upper bound, i.e., an element  such 

that for all , . We say that  is strictly inductively 

ordered if every totally ordered subset  of  has a least upper bound, 

i.e., an upper bound  so that if  is an upper bound of , then . 

An element  is maximal if the relation  implies . 

(Note that a set may have several maximal elements.) 
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We say a function  is increasing if  for 

all . 

Statement 

Every inductively ordered set  has a maximal element. 

Proof (using the Axiom of Choice) 

We first prove some intermediate results, viz., Bourbaki's Theorem (also 

known as the Bourbaki-Witt theorem). 

Let  be a strictly inductively ordered set, and let  be an 

increasing function. Pick some . Let  be the set of 

elements  such that . Evidently,  is stricty inductively 

ordered, for if  is a totally ordered subset of , then it has a least 

upper bound in , which is evidently greater than , so this least upper 

bound is an element of . We say that a 

subset  is admissable if it satisfies these conditions: 

  

  

 For every totally ordered subset , the least upper bound 

of  in  is an element of . 

Let  be the intersection of all admissable subsets of . We note 

that  is not empty, as  is an admissable subset of itself, and all 

admissable sets contain . Then  is the least admissable set, under 

order by inclusion. 

We say that an element  is an extreme point if 

,  together imply . For an extreme point  denote 

by  the set of  such that  or . 

Lemma 1. 

For each extreme point , . 

Proof. It suffices to show that  is an admissable set. 

Evidently, , so . Now, let  be an element of . 

If , then evidently, , so . If , 
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then since  is an extreme point, , so . On the 

other hand, if , then , so . 

Therefore . 

Let  be a totally ordered subset of . Then  has a least upper 

bound . Since  is admissable, . Now, if , then 

evidently . On the other hand, if , then either , 

or every element of  is less than or equal to , so . Hence the 

least upper bound of every totally ordered subset  of  is an element 

of , so  is admissable. Therefore ; since we 

know , it follows that . ∎ 

Lemma 2. 

Every element of  is an extreme point. 

Proof. Let  be the set of extreme points of . As before, it suffices to 

show that  is an admissable set. Evidently,  is an extreme point 

of , as no element of  is less than , so every element less 

than  is also less than or equal to . Now, suppose  is an extreme 

point of . Then for any , if , then by Lemma 

1, . If , then , so ; if , 

then since  is an extreme point, . Therefore  is 

an extreme point, so . 

Now, let  be a totally ordered set of extreme points. Consider the least 

upper bound  of  in . If  is an element of  strictly less than , 

then  must be strictly less than some element . But  is an 

extreme point, so . Therefore  is an extreme point, i.e., 

an element of . It follows that  is an admissable set, so as 

before, . ∎ 

Theorem 3 (Bourbaki). 

For any strictly inductively ordered set  and any increasing 

function , there exists an element  of  such 

that . 
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Proof. Choose an arbitrary , and define  as before. Let  be 

the least admissable subset of , as before. By Lemmata 2 and 1, for all 

elements , either , or . Therefore  is 

totally ordered under the ordering induced by . Then  has a least 

upper bound  which is an element of . We note that , 

so , and since  is increasing, . 

Hence , as desired. ∎ 

Note that thus far, we have not used the Axiom of Choice. In the next 

corollary, however, we will use the Axiom of Choice. 

Corollary 4. 

Let  be a strictly inductively ordered set. Then  has a maximal 

element. 

Proof. Suppose the contrary. Then by the Axiom of Choice, for 

each , we may define  to be an element strictly greater 

than . Then  is an increasing function, but for 

no  does , which contradicts the Bourbaki-Witt 

Theorem. ∎ 

Corollary 5 (Zorn's Lemma). 

Let  be an inductively ordered set. Then  has a maximal element. 

Proof. Let  be the family of totally ordered subsets of . 

We claim that under the order relation ,  is a strictly inductively 

ordered set. Indeed, if  is a totally ordered subset of , then

is evidently the least upper bound of the , and 

if , then for some ,  and ; one 

of  and  is a subset of the other, by assumption, so  and  are 

comparable. It follows that  is totally ordered, i.e., . 

Now, by Corollary 4, there exists a maximal element  of . This 

set  is totally ordered, so it has an upper bound  in . 

Then  is a totally ordered set, so by the maximality of 
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, . Now, if , then  is a totally ordered set, 

so  and , so . Therefore  is a maximal element, 

as desired. ∎ 

Check in Progress-I 

Note: i) Write your answers in the space given below.  

Q. 1 State Zorn‘s Lemma. 

Solution ……………………………………………………………. 

…………………………………………………………………...... 

…………………………………………………………………… 

…………………………………………………………………….. 

Q. 2 State Hilbert Basis Theorem.  

Solution ……………………………………………………………. 

…………………………………………………………………...... 

…………………………………………………………………… 

…………………………………………………………………….. 

14.2 DEFINITIONS AND ELEMENTARY 

PROPERTIES 

A module is Artinian (respectively Noetherian) if it satisfies either of the 

following equivalent conditions:  

 

• every non-empty collection of submodules contains a minimal 

(repsectively maximal) element with respect to inclusion.  

• any descending (respectively ascending) chain of submodules 

stabilises. 

A module is Artinian (respectively Noetherian) if and only if it is so over 

its ring of homotheties 

An infinite direct sum of non-zero modules is neither Artinian nor 

Noetherian. A vector space is Artinian (respectively Noetherian) if and 

only if its dimension is finite 

We now list some elementary facts about Artinian and Noetherian 

modules. The following would continue to be true if we replaced 

‗Artinian‘ by ‗Noetherian‘: 

• Submodules and quotient modules of Artinian modules are Artinian.  
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• If a submodule N of a module M and the quotient M/N by it are 

Artinian, then so is M.  

• A finite direct sum is Artinian if and only if each of the summands is 

so. A comment about the simultaneous presence of the both conditions: 

 • A module is both Artinian and Noetherian if and only if it has finite 

length. Pertaining to the Noetherian condition alone, we make two more 

observations:  

• Any subset S of a Noetherian module contains a finite subset that 

generates the same submodule as S.  

• A module is Noetherian if and only if every submodule of it is finitely 

generated. 

14.3 DECOMPOSITION INTO 

INDECOMPOSABLES OF A FINITE 

LENGTH MODULE.  

Let u be an endomorphism of a module M. We have  

0 ⊆ Ker u ⊆ Ker u 2 ⊆ Ker u 3 ⊆ . . . 

M ⊇ Im u ⊇ Im u 2 ⊇ Im u 3 ⊇ . . . 

Suppose that the ascending chain above stabilises (e.g., when M is 

Noetherian), say Ker u n = Ker u n+1. Then Ker u n ∩ Im u n = 0. Indeed 

if and u nx = 0 and x = u ny, then u 2ny = 0, so y ∈ Ker u 2n = Ker u n 

and x = u ny = 0. If u were also surjective, then so would be u n, which 

means Im u n = M, and so Ker u n = 0, which means u n (and so also u) 

is injective. Thus 

 

A surjective endomorphism of a Noetherian module is bijective 

Suppose that the descending chain above stablises (e.g., when M is 

Artinian), say Im u n = Im u n+1. Then M = Ker u n + Im u n. Indeed, for 

x ∈ M, choosing y such that u nx = u 2ny, we have x = (x − u ny) + u ny. 

If u were also injective, then so would be u n, which means Ker u n = 0, 

so M = Im u n, which means u n (and so also u) in surjective. Thus: 

 

An injective endomorphism of an Artinian module is bijective. 
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Suppose now that M is of finite length (equivalently, both Noetherian 

and Artinian). Then the above considerations show that for sufficiently 

large n we have a direct sum decomposition. 

 

M = Ker u n ⊕ Im u n 

If M were also indecomposable, then either Ker u n = M, in which case u 

is nilpotent, or Ker u n = 0 and Im u n = M, in which case u n (and so 

also u) is invertible, which proves the first half of the following 

 

Proposition 1. The non-invertible endomorphisms of an indecomposable 

module M of finite length are nilpotent and form a two sided ideal. 

Proof. The first half having already been proved, we need only prove the 

second half. For a nilpotent endomorphism u, and ϕ any endomorphism, 

ϕu and uϕ are non-invertible, and so nilpotent. Now suppose u and v are 

nilpotent endomorphisms. Suppose u + v is not nilpotent. Then it is 

invertible. Let ϕ be such that ϕ(u+v) = 1. Writing ϕu = 1−ϕv, we observe 

that ϕu is on the one hand nilpotent and on the other invertible. 

 

Theorem 2. A module of finite length is a finite direct sum of 

indecomposable submodules. Further, any two such decompositions with 

no trivial factors are the Krull-Remaksame, i.e., the components are 

respectively isomorphic after a permutation. 

Proof. The decomposition into a finite direct sum of indecomposable 

submodules follows easily by an induction on the length. We will now 

prove the uniqueness. Suppose ⊕m i=1Mi and ⊕m0 i 0=1M0 i 0 are 

two such decompositions of a module M. We prove the following claim 

by induction and that will suffice: 

                          for 0 ≤ j ≤ m there exists an automorphism αj of M such 

that, after a possible rearrangement of the Mi , we have αjM0 k = Mk for 

1 ≤ k ≤ j. 

The base case of the induction (j = 0) is vacuous: we can take α0 to be 

the identity. Now, assuming the statement for some j − 1 < k, we will 

prove it for j. Writing αj−1M0 i 0 =: M00 i 0 , consider the 

decomposition ⊕m0 i 0=1M00 i 0 . We have M00 k = Mk for 1 ≤ k < j. 
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   Let pk, p 0 k , and p 00 k denote respectively the projection onto Mk, 

M0 k , and M00 k with respect to the respective decompositions. The 

restriction to M00 j of the projection p 00 j is of course the identity but it 

also equals P k p 00 j pk. By the previous proposition, there exists a 1 ≤ k 

≤ n such that p 00 j pk is an automorphism of M00 j . We claim that j ≤ 

k. Indeed, if k < j, then, since pkM00 j ⊆ Mk = M00 k , we have p 00 j 

pkM00 j = 0, a contradiction, and the claim is proved: 

  After a rearrangement of the Mk if necessary, we can take k = j. The 

automorphism αj is now defined as ϕαj−1 where ϕ is the endomorphism 

of M that is identity on all M00 l except l = j and is pj on M00 j : ϕ := 1 − 

p 00 j + pkp 00 j . We claim that ϕ is injective. It follows from the claim 

and what has been said earlier in this subsection that ϕ is bijective and 

that αj is an automorphism. To prove the claim, suppose that ϕx = 0. 

Write x − p 00 j x = −pkp 00 j x ∈ Mk; we see that p 00 j pkp 00 j x = 0 

since p 00 j clearly kills the left side. But p 00 j pk being an 

automorphism of M00 j , we conclude that p 00 j x = 0, so 0 = ϕx = x, 

and the claim is proved. 

 It remains only to show that αjM0 k = Mk for 1 ≤ k ≤ j. This is evident 

for k < j: indeed, ϕαj−1M0 k = ϕM00 k = M00 k = Mk. We now prove 

αjM0 j = Mj . Since αjM0 j = ϕM00 j ⊆ Mj , it follows that Mj = ϕM00 j 

 

Theorem. For an R-module M, the following are equivalent: 

 any non-empty collection Σ of submodules of M has a maximal 

element N (i.e. N ∈ Σ, and whenever M’ ∈ Σ we have M’ ⊆ N); 

 for any increasing sequence  of submodules 

of M, there is an n such that  We say 

that the sequence is eventually constant. 

Proof 

⇒: assume the first property; given , let Σ be the 

collection of all Mn. This has a maximal element, say Mn∈Σ. Being 

maximal, all subsequent terms  must be equal to Mn. 

⇐ : suppose Σ is non-empty and has no maximal element; pick M0∈Σ; 

this is not maximal, so we can pick M1∈Σ which properly contains M0; 

again this is not maximal, so pick M2∈Σ properly containing M1; 

repeat. ♦ 
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Definition. A module M which satisfies the two properties in the above 

theorem is said to be (left) noetherian. A ring is (left) noetherian if it is 

noetherian as a module over itself. 

The following result is a basic property of noetherian modules. 

Theorem. 

 If M is noetherian, so is any submodule and quotient module of M. 

 Conversely, if N ⊆ M is such that N and M/N are noetherian, then so 

is M. 

Proof 

First statement: let N ⊆ M. Any increasing sequence of submodules 

of N is also an increasing sequence of submodules of M, so it must 

terminate. Similarly, any increasing sequence of submodules 

of M/N corresponds to a sequence of submodules of M containing N, so it 

must terminate. 

Second statement: let (Mn) be an increasing sequence of submodules 

of M. Then (N ∩ Mn) is an increasing sequence of submodules of N so it 

is eventually constant. Also, ((N+Mn)/N) is an increasing sequence of 

submodules of M/N so it is eventually constant. So for large n, we have: 

 

This implies Mn = Mn+1. [ Proof : if x∈Mn+1, then by third 

equality x = y+z for y∈N and z∈Mn. So y = x–z is in N ∩ Mn+1 = N ∩ Mn, 

and x–z ∈ Mn means x∈Mn. ] So (Mn) is eventually constant. ♦ 

Corollary. 

 If M, N are noetherian, so is their direct sum M ⊕ N. 

 If M, N are noetherian submodules of P, so is M+N. 

 If M is a finitely generated module over a noetherian ring, then M is 

noetherian. 

Proof 

Indeed, M ⊆ M⊕N is a submodule whose quotient is isomorphic 

to N. Since M and N are noetherian, so is M⊕N. The second statement 

follows from that M+N is a quotient of M⊕N. 

For the third statement, let M be generated by . Then M is a 

sum of Rxi, as submodules of M. Each Rxi is a quotient of the 
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form R/I for some left ideal I   R; since R is noetherian, so is R/I, 

and M. ♦ 

Examples 

1. A simple module is noetherian since it has only two submodules. Thus 

a finitely generated semisimple module is noetherian. [#] In particular, a 

semisimple ring is noetherian. 

[#] Subtle point: show that a finitely generated semisimple 

module M must be a direct sum of finitely many simple 

submodules. Warning: even if M is generated by k elements, it is not true 

that M is a direct sum of k or less simple submodules. E.g. as Z-

module, Z/6 is generated by 1 element but Z/6 = Z/2 ⊕ Z/3. 

2. The Z-module Z is noetherian, i.e. Z is a noetherian ring. Thus, a 

finitely generated abelian group is a noetherian Z-module. 

3. The Z-module Q is not noetherian, for we have an infinite increasing 

sequence Z   (1/2)Z   (1/4)Z   … . This example also shows 

that  is not noetherian. Since Z is noetherian, it 

implies M/Z is non-noetherian. 

4. The Q-module Q is obviously noetherian though. More generally, all 

division rings are noetherian. 

5. Z[√2] is a finitely generated Z-module, so it is noetherian as a Z-

module. This implies it is a noetherian ring, since every (left) ideal 

of Z[√2] is also a Z-module. 

6. The infinite polynomial ring  is a 

non-noetherian ring since the sequence of 

ideals  never terminates. 

14.4 ARTINIAN MODULES AND RINGS 

Reversing the direction of inclusion in the definition of noetherian rings, 

we get a similar concept. We will merely state the results since the proofs 

are identical to the above. 

Theorem. For an R-module M, the following are equivalent: 
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 any non-empty collection Σ of submodules of M has a 

minimal element N (i.e. N ∈ Σ, and whenever M’ ∈ Σ we have M’ 

⊇ N); 

 for any decreasing sequence  of submodules 

of M, there is an n such that  

Definition. A module which satisfies the above two properties is said to 

be (left) artinian. A ring is (left) artinian if it is artinian as a module 

over itself. 

Again we have the following basic property. 

Theorem. 

 If M is artinian, so is any submodule and quotient module of M. 

 Conversely, if N ⊆ M is such that N and M/N are artinian, then so is 

M. 

Corollary. 

 If M, N are artinian, so is their direct sum M ⊕ N. 

 If M, N are artinian submodules of P, so is M+N. 

 A finitely generated module over an artinian ring is also artinian. 

Examples 

1. A simple module is artinian since it has only two submodules. Thus, a 

finitely generated semisimple module is artinian. In particular a 

semisimple ring is noetherian and artinian! 

2. The Z-module Z is not artinian since it contains an infinite decreasing 

sequence of left ideals Z ⊃ 2Z ⊃ 4Z ⊃ … . 

3. The module  is not artinian since it 

contains Z; however, M/Z is artinian! The proof is left as an exercise. 

Easy Exercises 

Prove that if R is a noetherian (resp. artinian) ring, then for any two-sided 

ideal I, R/I is also noetherian (resp. artinian). 

Prove that if R and S are noetherian (resp. artinian) rings, so is R × S. 

Summary. Noetherian and artinian modules are both concepts of 

“finite” modules. Finite sums, submodules and quotients of noetherian 

modules are noetherian. A finitely generated module over a noetherian 
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ring is noetherian. All the above holds when we replace “noetherian” 

with “artinian”. 

In case you missed the above examples, let us reiterate that semisimple 

rings are noetherian and artinian. 

Finally, to further emphasize the fact that noetherian / artinian modules 

are the correct analogy for ―finite‖, we have the following important 

lemma. Recall that for a finite set X, a function f : X → X is 

bijective ⇔ f is injective ⇔ f is surjective. Likewise: 

Lemma. Let M be a noetherian and artinian module. The following are 

equivalent for a module map f : M → M. 

 f is bijective; 

 f is injective; 

 f is surjective. 

Proof 

Suppose f is injective. We get 

 

Since M is artinian, eventually  To prove that f is 

surjective, let x∈M. 

Then  so  for some y∈M. 

Now  and since f is injective we have x = f(y) ∈ im f. 

The case where f is surjective ⇒f is injective, is left as an exercise for the 

reader. Hint: replace im with ker and you get an increasing sequence. ♦ 

 

Subtleties on Noetherian and Artinian 

In the above examples, we saw that a noetherian module may not be 

artinian, and vice versa. But when it comes to rings, an artinian ring 

must be noetherian! [ Hopefully we will eventually get around to proving 

this. ] The apparent asymmetry is rather surprising at first glance, but it 

may be partially explained by the following heuristics. 

Suppose R is a commutative ring which is artinian (thus, all left ideals 

are two-sided). If we let ∑ be any collection of ideals of R, then the 

collection of products  of ideals from ∑ has a lower bound, so 

eventually  This 
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suggests that R has only finitely many ideals, so the artinian condition is 

a rather strong one. 

Let us mention a result for noetherian modules which has no parallel for 

artinian ones. 

Theorem. An R-module M is noetherian ⇔ all its submodules are finitely 

generated. 

Proof 

⇒: since a submodule of M is noetherian, it suffices to show a noetherian 

module is finitely generated. Now, if M is noetherian, let ∑ be the 

collection of all finitely generated submodules of M. This has a 

maximal N∈∑, which is finitely generated. If N≠M, 

pick x in M outside N; then N + Rx is a finitely generated submodule 

of M which is strictly bigger than N, contradicting its maximality. 

Hence N=M, so M is finitely generated. 

⇐: take any increase sequence  of submodules of M. 

Let , which is a submodule of M, so it is finitely 

generated by, say,  Since there are only finitely many xi, 

some Mn must contain all of them, but this 

means Mn = N so  ♦ 

Left and Right Modules 

Finally, note that we‘ve been talking about left modules throughout, but 

we can also define the concept of noetherian and artinian for right 

modules. [ Or just note that a right R-module is the same as a left R
op

-

module. ] You may be surprised to learn that a left noetherian ring is not 

necessarily right noetherian. In fact, here we have a ring which is left 

noetherian and left artinian, but neither right noetherian nor right 

artinian! 

Proof 

It‘s not right artinian or right noetherian because it has right ideals of the 

form  where A is a subspace of R as a Q-vector space. It is easy 

to see that the collection of such subspaces has no maximal or minimal 

element. 

On the other hand, R is a direct sum of left ideals 
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Clearly J is simple. And I has a simple submodule  and 

the resulting quotient is I/I’ is isomorphic to J. Since I’, I/I’ and J are 

simple, they‘re noetherian and artinian. Thus R is left noetherian and left 

artinian. ♦ 

 

Check In Progress-II 

Note: i) Write your answers in the space given below.  

Q. 1 An R-module M is noetherian ⇔ all its submodules are finitely 

generated. 

Solution : 

……………………………………………………………………………. 

…………………………………………………………………………… 

…………………………………………………………………………… 

Q. 2 The non-invertible endomorphisms of an indecomposable module 

M of finite length are nilpotent and form a two sided ideal. 

Solution : 

……………………………………………………………………………. 

…………………………………………………………………………… 

…………………………………………………………………………… 

14.5 ARTINIAN MODULE 

A module that satisfies the descending chain condition for submodules. 

The class of Artinian modules is closed with respect to passing to 

submodules, quotient modules, finite direct sums and extensions. 

Extension in this context means that if the modules B and A/B are 

Artinian, then so is A. Each Artinian module can be decomposed into a 

direct sum of submodules which are no longer decomposable into a 
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direct sum. A module has a composition series if and only if it is both 

Artinian and Noetherian. See also Artinian ring. 

In abstract algebra, an Artinian module is a module that satisfies 

the descending chain condition on its poset of submodules. They are for 

modules what Artinian rings are for rings, and a ring is Artinian if and 

only if it is an Artinian module over itself (with left or right 

multiplication). Both concepts are named for Emil Artin. 

In the presence of the axiom of choice, the descending chain condition 

becomes equivalent to the minimum condition, and so that may be used 

in the definition instead. 

Like Noetherian modules, Artinian modules enjoy the following heredity 

property: 

 If M is an Artinian R-module, then so is any submodule and any 

quotient of M. 

The converse also holds: 

 If M is any R module and N any Artinian submodule such that M/N is 

Artinian, then M is Artinian. 

As a consequence, any finitely-generated module over an Artinian ring is 

Artinian. Since an Artinian ring is also a Noetherian ring, and finitely-

generated modules over a Noetherian ring are Noetherian, it is true that 

for an Artinian ring R, any finitely-generated R-module is both 

Noetherian and Artinian, and is said to be of finite length; however, 

if R is not Artinian, or if M is not finitely generated, there 

are counterexamples. 

Left and right Artinian rings, modules and bimodules 

The ring R can be considered as a right module, where the action is the 

natural one given by the ring multiplication on the right. R is called 

right Artinian when this right module R is an Artinian module. The 

definition of "left Artinian ring" is done analogously. For 

noncommutative rings this distinction is necessary, because it is possible 

for a ring to be Artinian on one side only. 
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The left-right adjectives are not normally necessary for modules, because 

the module M is usually given as a left or right R module at the outset. 

However, it is possible that M may have both a left and right R module 

structure, and then calling M Artinian is ambiguous, and it becomes 

necessary to clarify which module structure is Artinian. To separate the 

properties of the two structures, one can abuse terminology and refer 

to M as left Artinian or right Artinian when, strictly speaking, it is correct 

to say that M, with its left R-module structure, is Artinian. 

The occurrence of modules with a left and right structure is not unusual: 

for example R itself has a left and right R module structure. In fact this is 

an example of a bimodule, and it may be possible for an abelian 

group M to be made into a left-R, right-S bimodule for a different ring S. 

Indeed, for any right module M, it is automatically a left module over the 

ring of integers Z, and moreover is a Z-R bimodule. For example, 

consider the rational numbers Q as a Z-Q bimodule in the natural way. 

Then Q is not Artinian as a left Z module, but it is Artinian as a 

right Q module. 

The Artinian condition can be defined on bimodule structures as well: 

an Artinian bimodule is a bimodule whose poset of sub-bimodules 

satisfies the descending chain condition. Since a sub-bimodule of an R-

S bimodule M is a fortiori a left R-module, if M considered as a 

left R module were Artinian, then M is automatically an Artinian 

bimodule. It may happen, however, that a bimodule is Artinian without 

its left or right structures being Artinian, as the following example will 

show. 

Example: It is well known that a simple ring is left Artinian if and only if 

it is right Artinian, in which case it is a semisimple ring. Let R be a 

simple ring which is not right Artinian. Then it is also not left Artinian. 

Considering R as an R-R bimodule in the natural way, its sub-bimodules 

are exactly the ideals of R. Since R is simple there are only two: R and 

the zero ideal. Thus the bimodule R is Artinian as a bimodule, but not 

Artinian as a left or right R-module over itself. 
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Lemma. An R-module M is of finite length if and only if it is both 

Noetherian and Artinian.  

Proof. If M is of finite length, then all strict chains of submodules of M 

are finite (b) and (c). So in this case M is clearly both Noetherian and 

Artinian. Conversely, assume that M is both Noetherian and Artinian. 

Starting from M0 = 0, we try to construct a chain M0 ( M1 ( M2 ( ··· of 

submodules of M as follows: for n ∈ N let Mn+1 be a minimal 

submodule of M that strictly contains Mn — as long as Mn 6= M this 

works (b) since M is Artinian. But as M is Noetherian as well, we cannot 

get such an infinite ascending chain of submodules, and thus we 

conclude that we must have Mn = M for some n ∈ N. The resulting chain 

0 = M0 ( M1 ( ··· ( Mn = M is then a composition series for M, since by 

construction there are no submodules between Mi−1 and Mi for all i = 

1,...,n. 

Exercise . Let M be an R-module, and let ϕ : M → M be an R-module 

homomorphism. If M is Noetherian (hence finitely generated) and ϕ is 

surjective, you already know that ϕ has to be an isomorphism. Now show 

that if M is Artinian and ϕ is injective, then ϕ is again an isomorphism. 

(Hint: Consider the images of ϕ n for n ∈ N.) So far we have mostly 

considered chain conditions for general modules. For the rest of this 

chapter we now want to specialize to the case of rings. In this case we 

can obtain stronger results, however we will also see that this is where 

the Noetherian and Artinian conditions begin to diverge drastically. So 

let us consider these two conditions in turn, starting with the more 

important case of Noetherian rings. The one central result on Noetherian 

rings is Hilbert‘s Basis Theorem, which implies that ―most rings that you 

will meet in practice are Noetherian‖. 

Lemma . Let N   M be a R-submodule. Then M is Noetherian (resp. 

Artinian) if and only if both N and M/N are Noetherian. 

Proof. We do the proof of the Noetherian property. The Artinian property 

is proved in the same way 

There are two statements to prove now. Let first us assume that M is 

Noetherian, and show that N and M/N are also Noetherian. A chain of 
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submodules in N is at the same time a chain of submodules in M. Since 

the latter chains stabilize, N is Noetherian. Now take a chain of 

submodules in M/N.  This chain gives us a chain of submodules in M, 

and it must stablize, so must the original chain. 

             Now let us assume that both N and M/N are Noetherian. To 

show that M is Noetherian, consider a chain of submodules in M: 

M1   M2   · · ·   M 

and this gives rise to two other chains:  

M1 ∩ N   M2 ∩ N   · · ·   N 

And                                                        (M1 + N)/N   (M2 + N)/N   · · · 

  M/N. 

Both of the new chains stabilize since N and M/N are Noetherian: for i ≥ 

n we have 

Mi ∩ N = Mi+1 ∩ N 

(Mi + N)/N = (Mi+1 + N)/N 

Note that by from the Third Isomorphism Theorem we have a natural 

isomorphism 

(Mi + N)/N ' Mi/(Mi ∩ N). 

Now comparing the two adjacent submodules Mi , Mi+1 for i ≥ n we see 

that they have the same submodule 

K := Mi ∩ N = Mi+1 ∩ N 

such that the quotient modules Mi/K, Mi+1/K are also the same as 

submodules in M/K. This forces Mi = Mi+1. 

14.6 SUMMARY  

We study in this unit about Noethrian And Artinian Module and its 

properties also study some examples of Noetgrian And Artinian Module. 

We study sub module of Noethrian and Artinian Module. We study R-
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Module ans its examples with proposition. We study left and right 

module over module.  

1. The following conditions are equivalent for a left -module: 

a)  is Noetherian. 

b) Every submodule  of  is finitely generated (i.e. can be 

written as  for some ). 

c) Every collection of submodules of  has a maximal element. 

2. Hilbert's Basis Theorem is a result concerning Noetherian rings. 

It states that if  is a (not necessarily commutative) Noetherian 

ring, then the ring of polynomials  is also 

a Noetherian ring. 

3. For any strictly inductively ordered set  and any increasing 

function , there exists an element  of  such 

that . 

4. For an R-module M, the following are equivalent: 

any non-empty collection Σ of submodules of M has a 

minimal element N (i.e. N ∈ Σ, and whenever M’ ∈ Σ we have M’ 

⊇ N); 

for any decreasing sequence  of 

submodules of M, there is an n such 

that  

5. Let M be a noetherian and artinian module. The following are 

equivalent for a module map f : M → M. 

f is bijective; 

f is injective; 

f is surjective. 

6. Let N   M be a R-submodule. Then M is Noetherian (resp. 

Artinian) if and only if both N and M/N are Noetherian. 

14.7 KEYWORD 
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Krull : What can you do some things in life are just so 

Generated : produce (a set or sequence of items) by performing 

specified mathematical or logical operations on an initial set 

Trivial : Denoting a subgroup that either contains only the identity 

element or is identical with the given group 

14.8 QUESTIONS FOR REVIEW  

Q. 1 Let R be a Noetherian ring. Show: 

 (a) If R is an integral domain, every non-zero non-unit a ∈ R can be 

written as a product of irreducible elements of R.  

(b) For any ideal I ER there is an n ∈ N such that ( √ I) n   I. 

Q. 2 Let S be a multiplicatively closed subset of a ring R. If R is 

Noetherian (resp. Artinian), show that the localization S −1R is also 

Noetherian (resp. Artinian). 

Q. 3 Prove for any R-module M: 

 (a) If M is Noetherian then R/annM is Noetherian as well.  

(b) If M is finitely generated and Artinian, then M is also Noetherian 

Q. 4 For any ring R we have: R is Artinian ⇔ R is Noetherian and every 

prime ideal of R is maximal. 

Q. 5 Let R be an Artinian ring.  

(a) There are (not necessarily distinct) maximal ideals P1,...,Pn ER such 

that P1 · ··· ·Pn = 0.  

(b) R has only finitely many prime ideals, all of them are maximal, and 

occur among the P1,...,Pn in (a). 

Q. 6 Any finitely generated algebra over a Noetherian ring is itself a 

Noetherian ring. 
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Q. 7 Let M be an R-module, and let ϕ : M → M be an R-module 

homomorphism. If M is Noetherian (hence finitely generated) and ϕ is 

surjective. 

Q. 8 An R-module M is of finite length if and only if it is both 

Noetherian and Artinian. 

Q. 9 Let M and N be R-modules.  

(a) The direct sum M ⊕N is Noetherian if and only if M and N are 

Noetherian.  

(b) If R is Noetherian and M is finitely generated, then M is also 

Noetherian.  

The same statements also hold with ―Noetherian‖ replaced by ―Artinian‖. 

Q. 10 Let N be a submodule of an R-module M.  

(a) M is Noetherian if and only if N and M/N are Noetherian. 

 (b) M is Artinian if and only if N and M/N are Artinian. 

Q. 11 (Equivalent conditions for Noetherian and Artinian modules). Let 

M be an R-module. 

 (a) M is Noetherian if and only if every non-empty family of 

submodules of M has a maximal element.  

(b) M is Artinian if and only if every non-empty family of submodules of 

M has a minimal element.  

(c) M is Noetherian if and only if every submodule of M is finitely 

generated. 

Q. 12 Any field K is trivially Noetherian and Artinian as it has only the 

trivial ideals (0) and K. More generally, a K-vector space V is 

Noetherian if and only if it is Artinian if and only if it is finite-

dimensional. 
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14.10 ANSWER TO CHECK YOUR 

PROGRESS  

Check in Progress-I 

Answer  Q. 1 Check in Section 1.4 

              Q 2 Check in Section 1.3 

Check in Progress-II 

Answer  Q. 1 Check in Section 4 

              Q 2 Check in Section 3 


